ECONOMICS 100C: MICROECONOMICS

Winter 2016 Section A: MWF 12:00-12:50, CENTR 115 Section B: MWF 1:00-1:50, CENTR 115 Maxim Sinitsyn, <u>msinitsyn@ucsd.edu</u> Office Hours: Tu 2-4 in Econ Bldg 111

TAs Sec. A: Seung-Keun Martinez sem012@ucsd.edu	Session place/time CENTR 214; Tu 7:00-7:50	Office, Office Hours SH 236; Tu 9:00-10:00
Sec A: Wei You wyou@ucsd.edu	CENTR 214; Tu 8:00-8:50	ECON 125; M 1:00-3:00
Sec. B: Erik Lillethun elilleth@ucsd.edu	CENTR 212; W 6:00-6:50	ECON 122; W 9:00-11:00
Sec. B: Rebecca Fraenkel rfraenke@ucsd.edu	CENTR 212; W 7:00-7:50	SH 224; Th 11:00-12:00

Course Objectives: Econ 100C examines departures from the neoclassical model including imperfect competition, strategy, asymmetric information, and signaling.

Required Texts:

(1) Varian, H. R. 2014. *Intermediate Microeconomics with Calculus*. W. W. Norton & Company, Inc.(2) Mark Machina's Econ 100ABC Math Handout.

Web Resources: You are encouraged to take advantage of the following supplemental material for the 100ABC sequence, available free over the Internet.

(1) Martin Osborne's intermediate mathematics tutorial:

http://www.economics.utoronto.ca/osborne/MathTutorial/index.html

(2) Preston McAfee's Introductory textbook (this material is at a level between most microeconomics principles textbooks and Perloff's more advanced treatment.) <u>http://www.introecon.com/</u>

Weekly Homework: Each week on Friday, I will post practice problems on TritonEd. They will not be graded. The best way to prepare for the exams is to form study groups and practice doing the problem sets together. I will post the answers after the problems are reviewed in TA sessions.

Exams: Grading will be based on two midterms (25% each) and a final examination (50%). The final exam will be cumulative. You must take both midterms. All exams are closed book, and you may not use calculators and cell phones during the exams.

Regrade Requests: I will give back the midterm exams in class. You can ask for a regrade before you leave the room with your exam. Your whole exam will be regraded, and your score can go up or down. If you don't think you have enough time to look at your exam after the class, you can pick up your exam from my office during my office hours.

Schedule:

Week	Topic	Textbook	Video				
		Chapter					
1	Review of Perfect Competition, Government	16	E.2				
	Intervention in the Market						
2	Monopoly	25	G.1				
3	Pricing	26	G.2				
	Midterm 1, January 29 at 5pm (Sec. A in PCYNH 106; Sec. B in PCYNH 109);						
4, 5	Game Theory	29, 20	F				
6, 7	Oligopoly	28	G.3				
	No class on Friday, Feb. 19						
	Midterm 2, February 26 at 5pm (Sec. A in PCYNH 106; Sec. B in PCYNH 109)						
8	Externalities	35	H.1				
9	Public Goods	37	H.2				
10	Asymmetric Information	38	Ι				
Final (Sec. A – March 16, 11:30-1:30; Sec. B – March 18, 11:30-1:30)							

bFAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U(x_1,,x_n)$ utility function	$p_1 \cdot x_1 + \dots + p_n \cdot x_n = I$ budget constraint	$x_1,,x_n$ commodity levels	$p_1,,p_n, I$ prices and income	$x_i(p_1,,p_n,I)$ regular demand functions	$V(p_1,,p_n,I)$ indirect utility function
Expenditure Minimization Problem	$p_1 \cdot x_1 + \dots + p_n \cdot x_n$ expenditure level	$U(x_1,,x_n) = u$ desired utility level	$x_1,,x_n$ commodity levels	$p_1,,p_n, u$ prices and utility level	$h_i(p_1,,p_n,u)$ compensated demand functions	$e(p_1,,p_n,u)$ expenditure function
Labor/Leisure Decision	<i>U</i> (<i>H</i> , <i>I</i>) utility function	$I = I_0 + w \cdot (168 - H)$ budget constraint	<i>H</i> , <i>I</i> leisure time, disposable inc.	<i>w</i> , <i>I</i> ₀ wage rate and nonwage income	$168 - H(w, I_0)$ labor supply function	V(w, I ₀) indirect utility function
Consumption/ Savings Decision	$U(c_1,c_2)$ utility function	$c_2 = I_2 + (1+i) \cdot (I_{1-}c_1)$ budget constraint	c_1, c_2 consumption levels	I_1 , I_2 , i income stream and interest rate	$c_1(I_1, I_2, i), c_2(I_1, I_2, i)$ consumption functions	$V(I_1, I_2, i)$ indirect utility function
Long Run Cost Minimization	$w \cdot L + r \cdot K$ total cost	F(L,K) = Q desired output	L, K factor levels	<i>Q</i> , <i>w</i> , <i>r</i> desired output and factor prices	L(Q,w,r), K(Q,w,r) output-constrained factor demand functions	LTC(Q,w,r) long run total cost function
Long Run Profit Maximization (in terms of Q)	$P \cdot Q - LTC(Q, w, r)$ total profit	none	<i>Q</i> output level	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	<i>Q</i> (<i>P</i> , <i>w</i> , <i>r</i>) long run supply function	$\pi(P,w,r)$ long run profit function
Long Run Profit Maximization (in terms of L and K)	$P \cdot F(L,K) - w \cdot L - r \cdot K$ total profit	none	<i>L</i> , <i>K</i> factor levels	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	L(P,w,r), K(P,w,r) factor demand functions	$\pi(P,w,r)$ long run profit function