ECONOMICS 100C: MICROECONOMICS

Winter 2015
Section A: MWF 2:00-2:50, CENTR 115

Maxim Sinitsyn, msinitsyn@ucsd.edu
Office Hours: Tu 2-4 in Econ Bldg 111

Section B: MWF 3:00-3:50, CENTR 115

TAs
Sec. A: Bong Hwan Kim
bhk002@ucsd.edu
Sec A: Jason Bigenho jbigenho@ucsd.edu

Sec. B: Erik Lillethun elilleth@gmail.com

Session place/time
HSS 1330; Tu 8:00-8:50

HSS 1330; Tu 7:00-7:50

CENTR 109; W 7:00-7:50
CENTR 109; W 8:00-8:50

Office, Office Hours
ECON 116; Tu 5-7

ECON 116; Th 12:30-2:30

ECON 122; W 10-12

Course Objectives: Econ 100C examines departures from the neoclassical model including imperfect competition, strategy, asymmetric information, and signaling.

Required Texts:
(1) Perloff, Jeffrey M. (2011) Microeconomics: Theory and Applications with Calculus, $2^{\text {nd }}$ edition.

Pearson/Addison-Wesley.
(2) Mark Machina’s Econ 100ABC Math Handout.

Web Resources: You are encouraged to take advantage of the following supplemental material for the 100ABC sequence, available free over the Internet.
(1) Martin Osborne's intermediate mathematics tutorial:
http://www.economics.utoronto.ca/osborne/MathTutorial/index.html
(2) Preston McAfee's Introductory textbook (this material is at a level between most microeconomics principles textbooks and Perloff's more advanced treatment.) http://www.introecon.com/

Weekly Homework: Each week on Friday, I will post practice problems on Ted. They will not be graded. The best way to prepare for the exams is to form study groups and practice doing the problem sets together. I will post the answers after the problems are reviewed in TA sessions.

Exams: Grading will be based on two midterms (25\% each) and a final examination (50\%). The final exam will be cumulative. You must take both midterms. All exams are closed book, and you may not use calculators and cell phones during the exams.

Regrade Requests: I will give back the midterm exams in class. You can ask for a regrade before you leave the room with your exam. Your whole exam will be regraded, and your score can go up or down. If you don't think you have enough time to look at your exam after the class, you can pick up your exam from my office during my office hours.

Schedule:

Week	Topic	Textbook Chapter
1	Review of Perfect Competition, Government	$9.2, ~ 9.3$, and 9.5

Final (Sec. A: March 16, 3:00-5:00; Sec. B: March 18, 3:00-5:00)

FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U\left(x_{1}, \ldots, x_{n}\right)$ utility function	$p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n}=I$ budget constraint	$\begin{gathered} X_{1}, \ldots, X_{n} \\ \text { commodity } \\ \text { levels } \end{gathered}$	p_{1}, \ldots, p_{n}, I prices and income	$\begin{aligned} & x_{i}\left(p_{1}, \ldots, p_{n}, l\right) \\ & \text { regular demand } \\ & \text { functions } \end{aligned}$	$V\left(p_{1}, \ldots, p_{n}, I\right)$ indirect utility function
Expenditure Minimization Problem	$p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n}$ expenditure level	$U\left(x_{1}, \ldots, x_{n}\right)=u$ desired utility level	$\begin{gathered} x_{1}, \ldots, X_{n} \\ \text { commodity } \\ \text { levels } \end{gathered}$	p_{1}, \ldots, p_{n}, u prices and utility level	$h_{i}\left(p_{1}, \ldots, p_{n}, u\right)$ compensated demand functions	$\begin{aligned} & e\left(p_{1}, \ldots, p_{n}, u\right) \\ & \text { expenditure } \\ & \text { function } \end{aligned}$
Labor/Leisure Decision	$U(H, I)$ utility function	$\begin{gathered} I=I_{0}+w \cdot(168-H) \\ \text { budget constraint } \end{gathered}$	H, I leisure time, disposable inc	w, I_{0} wage rate and nonwage income	$168-H\left(w, I_{0}\right)$ labor supply function	$V\left(w, I_{0}\right)$ indirect utility function
Consumption/ Savings Decision	$\begin{aligned} & U\left(c_{1}, c_{2}\right) \\ & \text { utility function } \end{aligned}$	$c_{2}=I_{2}+(1+i) \cdot\left(I_{1}-c_{1}\right)$ budget constraint	$\begin{gathered} c_{1}, c_{2} \\ \text { consumption } \\ \text { levels } \end{gathered}$	I_{1}, I_{2}, i income stream and interest rate	$c_{1}\left(I_{1}, I_{2}, i\right), c_{2}\left(I_{1}, I_{2}, i\right)$ consumption functions	$V\left(I_{1}, I_{2}, i\right)$ indirect utility function
Long Run Cost Minimization	$w \cdot L+r \cdot K$ total cost	$F(L, K)=Q$ desired output	$\begin{gathered} L, K \\ \text { factor levels } \end{gathered}$	Q, w, r desired output and factor prices	$\begin{gathered} L(Q, w, r), K(Q, w, r) \\ \text { output-constrained } \\ \text { factor demand functions } \end{gathered}$	LTC(Q,w,r) long run total cost function
Long Run Profit Maximization (in terms of Q)	$\begin{gathered} P \cdot Q-L T C(Q, w, r) \\ \text { total profit } \end{gathered}$	none	output level	P, w, r output price and factor prices	$Q(P, w, r)$ long run supply function	$\pi(P, w, r)$ long run profit function
Long Run Profit Maximization (in terms of L and K)	$\begin{gathered} P \cdot F(L, K)-w \cdot L-r \cdot K \\ \text { total profit } \end{gathered}$	none	L, K factor levels	P, w, r output price and factor prices	$L(P, w, r), K(P, w, r)$ factor demand functions	$\pi(P, w, r)$ long run profit function

