ECONOMICS 100B: MICROECONOMICS

Winter 2011		Tuesday, Thursday 9:30-10:50a	m So	Solis 104		
Professor Mark Machina		Office: 217 Econ Bldg.	Office Hours: Wed 8-noon			
TA: Tim Keller		140 Sequoyah Hall	Th 2:00-4:00pm			
Section 1		Thursday 7:00-7:50pm	WLH 2005			
Section 2		Thursday 8:00-8:50pm	WLH 2005			
DATE		Торіс	CHAPTER I	n Text		
Jan. 4	Introduction & Mathematics of Comparative Statics Mat		Math Handout Sects. H	Math Handout Sects. F, G, H		
Jan. 6	Theory of Product		Ch. 6			
Jan. 11	Theory of Product		Ch. 6			
Jan. 13	Theory of Product		Ch. 6			
Jan. 18	Theory of Cost		Ch. 7			
Jan. 20	Theory of Cost (c		Ch. 7			
Jan. 25	(Tuesday) 1st M	lidterm Exam				
Jan. 27	Theory of Cost (c		Ch. 7			
Feb. 1	Profit Maximizati	tition	Ch. 8			
Feb. 3	Profit Maximizati	tition (continued)	Ch. 8			
Feb. 8	Profit Maximization and Supply under Perfect Competition (continued)					
Feb. 10	Demand for Facto		Ch. 15			
Feb. 15	Demand for Facto		Ch. 15			
Feb. 17	Equilibrium, Dynamics & Comparative Statics of Perf. Comp. Markets Ch. 2					
Feb. 22	(Tuesday) 2nd I	Midterm Exam				
Feb. 24	Equilibrium, Dyna	amics & Comparative Statics of Perf	Comp. Markets (cont.)	Ch. 9		
Mar. 1	Efficiency of a Pe	rfectly Competitive Market		Ch. 10		
Mar. 3	General Equilibriu	ım		Ch. 10		
Mar. 8	Efficiency of Perfectly Competitive Market System					
Mar. 10	Conclusion & Ove	erview				
Mar. 15	(Tuesday) FINA	LEXAM 8:00-11:00am (location	n TBA)			

TEXT & READINGS: *Microeconomics: Theory and Applications with Calculus* by Jeffrey Perloff (Custom UCSD Edition). There is also a Soft Reserve Package which contains the Math Handout, practice problems, and old exam questions. You are responsible for all the material in the assigned portions of the text and the Math Handout.

EXAMS: Grades are determined on the basis of two Midterm Exams and a Final Exam.

COURSE WEB PAGE: The course web page is at:

ECON 100B COURSE OUTLINE

I. MATHEMATICS OF COMPARATIVE STATICS

- a. Comparative Statics of Equilibria (Math Handout, Section F)
- b. Comparative Statics of Solution Functions (Math Handout, Section G)
- c. Comparative Statics of Optimal Value Functions (Math Handout, Section H)

II. THEORY OF PRODUCTION

a. Production Functions

Types of Factors and Their Income Examples: Linear, Leontief, Cobb-Douglas Total Product Curves

b. Marginal Products and the Law of (Eventually) Diminishing Marginal Product Definition of Marginal Product and Algebraic Examples Marginal Poduct Curves (Linear, Leontief, Cobb-Douglas) Hypothesis of Diminishing Marginal Product of a Factor

c. Average Products and the Average-Marginal Relationship

Definition of Average Product Average Product Curves (Linear, Leontief, Cobb-Douglas) Average-Marginal Relationship ("Grade Point Average Theorem")

d. Isoquants and Marginal Rate of Technical Transformation (MRTS)

Definition and General Properties of Isoquants Examples: Linear, Leontief, Cobb-Douglas Definition of MRTS Expressing MRTS in Terms of Marginal Products Examples: Linear, Leontief, Cobb-Douglas Hypothesis of Diminishing MRTS

e. Returns to Scale

f. Technical Progress

III. THEORY OF COST:

a. The Nature of Cost

Accounting vs. Opportunity Cost of Owned Factors Cost of Entrepreneurial Ability and Definition of "Economic Profits" Short Run vs. Long Run Planning

b. Short Run Cost Functions

Expansion Path in Short Run Graphical Derivation of Short Run Total Cost Curve Algebraic Derivation of Short Run Total Cost Function (Linear, Leontief, Cobb-Douglas) Short Run Variable, Short Run Fixed and Short Run Marginal Cost Functions Short Run Average Variable, Short Run Average Fixed and Short Run Average Total Cost Functions Relation of Short Run Marginal Cost to Marginal Product of Input and Input Price

c. Long Run Cost Minimization

Isocost Lines Graphical Illustration of Long Run Cost Minimization First Order Conditions for Long Run Cost Minimization Second Order Conditions (Hypothesis of Dimishing MRTS) Output Constrained Factor Demands

d. Long Run Cost Functions

Expansion Path in Long Run

Algebraic Derivation of Long Run Total Cost Function (Linear, Leontief, Cobb-Douglas) Long Run Average Cost and Long Run Marginal Cost Functions Relation of Long Run Marginal Cost to Marginal Product of Inputs and Input Prices

e. Relationship between Long Run and Short Run Cost Curves

Long Run and Short Run Total Cost Curves Long Run and Short Run Average Cost Curves Long Run and Short Run Marginal Cost Curves

IV. PROFIT MAXIMIZATION AND SUPPLY UNDER PERFECT COMPETITION

a. Short Run Profit Maximization and Supply under Perfect Competition

Short Run Profit Maximization and the Shut-Down Decision Short Run Supply Curve of the Firm Short Run Supply Function of the Firm (Examples: Cobb Douglas, Cubic) Properties of Short Run Supply Functions Short Run Market Supply

b. Long Run Profit Maximization and Supply under Perfect Competition

Graphical Illustration and Algebraic Formulation of Long Run Profit Maximization Properties of Long Run Profit Functions

Graphical Illustration and Algebraic Formulation of Long Run Supply Curve Examples: Cobb Douglas, Cubic Properties of Long Run Supply Functions Long Run Market Supply

c. Transactions Costs and Internal Production

V. DEMAND FOR FACTORS OF PRODUCTION

- a. Maximizing Profits by Choosing Optimal Input Levels
- b. Short Run Factor Demand
- c. Long Run Factor Demand
- d. Incentive Aspects of Alternative Compensation Schemes.

VI. EQUILIBRIUM, DYNAMICS AND COMPARATIVE STATICS OF PERFECTLY COMPETITIVE MARKETS

- a. Assumptions of Perfect Competition and "Law of One Price"
- b. Equilibrium in Perfectly Competitive Markets
- c. Dynamics of Market Adjustment
- d. Comparative Statics of Perfectly Competitive Markets

VII. GENERAL EQUILIBRIUM

VIII. EFFICIENCY OF A PERFECTLY COMPETITIVE MARKET SYSTEM

- a. Pareto Efficiency
- **b.** Edgeworth Boxes
- c. Efficiency of Perfectly Competitive Equilibrium

FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U(x_1,,x_n)$ utility function	$p_1 \cdot x_1 + \dots + p_n \cdot x_n = I$ budget constraint	$x_1,,x_n$ commodity levels	$p_1,,p_n, I$ prices and income	$x_i(p_1,,p_n,I)$ regular demand functions	$V(p_1,,p_n,I)$ indirect utility function
Expenditure Minimization Problem	$p_1 \cdot x_1 + \dots + p_n \cdot x_n$ expenditure level	$U(x_1,,x_n) = \overline{u}$ desired utility level	x ₁ ,,x _n commodity levels	$p_1,,p_n,\overline{u}$ prices and utility level	$h_i(p_1,,p_n,\overline{u})$ compensated demand functions	$e(p_1,,p_n,\overline{u})$ expenditure function
Labor/Leisure Decision	<i>U</i> (<i>H</i> , <i>I</i>) utility function	$I = I_0 + w \cdot (168 - H)$ budget constraint	<i>H</i> , <i>I</i> leisure time, disposable inc.	<i>w</i> , <i>I</i> ₀ wage rate and nonwage income	$168 - H(w, I_0)$ labor supply function	V(w, I ₀) indirect utility function
Consumption/ Savings Decision	$U(c_1,c_2)$ utility function	$c_2 = I_2 + (1+i) \cdot (I_1 - c_1)$ budget constraint	c_1, c_2 consumption levels	I_1 , I_2 , i income stream and interest rate	$c_1(I_1, I_2, i), c_2(I_1, I_2, i)$ consumption functions	$V(I_1, I_2, i)$ indirect utility function
Long Run Cost Minimization	$w \cdot L + r \cdot K$ Total Cost	F(L,K) = Q desired output	<i>L</i> , <i>K</i> factor levels	<i>Q</i> , <i>w</i> , <i>r</i> desired output and factor prices	L(Q,w,r), K(Q,w,r) output-constrained factor demand functions	<i>LTC</i> (<i>Q</i> , <i>w</i> , <i>r</i>) Long Run Total Cost function
Long Run Profit Maximization (in terms of Q)	$P \cdot Q - LTC(Q, w, r)$ Total profit	none	<i>Q</i> output level	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	<i>Q</i> (<i>P</i> , <i>w</i> , <i>r</i>) Long Run supply function	$\pi(P,w,r)$ Long Run profit function
Long Run Profit Maximization (in terms of L and K)	$P \cdot F(L,K) - w \cdot L - r \cdot K$ Total profit	none	<i>L, K</i> factor levels	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	L(P,w,r), K(P,w,r) factor demand functions	$\pi(P,w,r)$ Long Run profit function