ECONOMICS 100C: MICROECONOMICS

Summer II 2019
TTh 11:00-1:50, PETER 104

Maxim Sinitsyn, msinitsyn@ucsd.edu
Office Hours: M, T 2-3 in Econ Bldg 111

TA
Keri Hu p5hu@ucsd.edu

Session place/time
SOLIS 104; W 12:00-1:50

Office, Office Hours
ECON 123; M, T 5:30-6:30

Course Objectives: Econ 100C examines departures from the neoclassical model including imperfect competition, strategy, asymmetric information, and signaling.

Required Texts:
(1) Varian, H. R. 2014. Intermediate Microeconomics with Calculus. W. W. Norton \& Company, Inc.
(2) Mark Machina's Econ 100ABC Math Handout.

Web Resources: You are encouraged to take advantage of the following supplemental material for the 100 ABC sequence, available free over the Internet.
(1) Martin Osborne's intermediate mathematics tutorial:
http://www.economics.utoronto.ca/osborne/MathTutorial/index.html
(2) Preston McAfee's Introductory textbook (this material is at a level between most microeconomics principles textbooks and Varian's more advanced treatment.) http://www.introecon.com/

Weekly Homework: Each week, I will post practice problems on Canvas. They will not be graded. The best way to prepare for the exams is to form study groups and practice doing the problem sets together. I will post the answers after the problems are reviewed in TA sessions.

Exams: Grading will be based on two midterms (25% each) and a final examination (50\%). The final exam will be cumulative. You must take both midterms. All exams are closed book, and you may not use calculators and cell phones during the exams.

Regrade Requests: You will have one week during which you can request a regrade of your exam. Your whole exam will be regraded, and your score can go up or down. You are allowed only one regrade request for the quarter. However, if you request is successful (your score goes up), you will get another regrade request.

Schedule:

Week	Topic	Textbook Chapter	Video
1	Review of Perfect Competition, Government Intervention in the Market	16	

Final, September 7, 3:00-5:00

FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U\left(x_{1}, \ldots, x_{n}\right)$ utility function	$p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n}=I$ budget constraint	$\begin{gathered} x_{1}, \ldots, x_{n} \\ \text { commodity } \\ \text { levels } \end{gathered}$	p_{1}, \ldots, p_{n}, I prices and income	$\begin{aligned} & x_{i}\left(p_{1}, \ldots, p_{n}, l\right) \\ & \text { regular demand } \\ & \text { functions } \end{aligned}$	$\begin{aligned} & V\left(p_{1}, \ldots, p_{n}, l\right) \\ & \text { indirect utility } \\ & \text { function } \end{aligned}$
Expenditure Minimization Problem	$\begin{gathered} p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n} \\ \text { expenditure level } \end{gathered}$	$U\left(x_{1}, \ldots, x_{n}\right)=u$ desired utility level	$\begin{gathered} x_{1}, \ldots, x_{n} \\ \text { commodity } \\ \text { levels } \end{gathered}$	p_{1}, \ldots, p_{n}, u prices and utility level	$h_{i}\left(p_{1}, \ldots, p_{n}, u\right)$ compensated demand functions	$e\left(p_{1}, \ldots, p_{n}, u\right)$ expenditure function
Labor/Leisure Decision	$U(H, I)$ utility function	$\begin{gathered} I=I_{0}+w \cdot(168-H) \\ \text { budget constraint } \end{gathered}$	H, I leisure time, disposable inc	w, I_{0} wage rate and nonwage income	$\begin{aligned} & 168-H\left(w, I_{0}\right) \\ & \text { labor supply function } \end{aligned}$	$V\left(w, I_{0}\right)$ indirect utility function
Consumption/ Savings Decision	$\begin{aligned} & U\left(c_{1}, c_{2}\right) \\ & \text { utility function } \end{aligned}$	$\left\lvert\, \begin{gathered} c_{2}=I_{2}+(1+i) \cdot\left(I_{1}-c_{1}\right) \\ \text { budget constraint } \end{gathered}\right.$	c_{1}, c_{2} consumption levels	I_{1}, I_{2}, i income stream and interest rate	$c_{1}\left(I_{1}, I_{2}, i\right), c_{2}\left(I_{1}, I_{2}, i\right)$ consumption functions	$V\left(I_{1}, I_{2}, i\right)$ indirect utility function
Long Run Cost Minimization	$\begin{aligned} & w \cdot L+r \cdot K \\ & \text { total cost } \end{aligned}$	$F(L, K)=Q$ desired output	L, K factor levels	Q, w, r desired output and factor prices	$L(Q, w, r), K(Q, w, r)$ output-constrained factor demand functions	$L T C(Q, w, r)$ long run total cost function
Long Run Profit Maximization (in terms of Q)	$\begin{gathered} P \cdot Q-L T C(Q, w, r) \\ \text { total profit } \end{gathered}$	none	$\underset{\text { output level }}{Q}$	P, w, r output price and factor prices	$Q(P, w, r)$ long run supply function	$\pi(P, w, r)$ long run profit function
Long Run Profit Maximization (in terms of L and K)	$\begin{gathered} P \cdot F(L, K)-w \cdot L-r \cdot K \\ \text { total profit } \end{gathered}$	none	L, K factor levels	P, w, r output price and factor prices	$L(P, w, r), K(P, w, r)$ factor demand functions	$\begin{aligned} & \pi(P, w, r) \\ & \text { long run profit } \\ & \text { function } \end{aligned}$

