ECONOMICS 100B: MICROECONOMICS

Summer II 2013 TuTh 11:00-1:50, York 2722 (from 2nd week Solis 104)

Maxim Sinitsyn, msinitsyn@ucsd.edu Office Hours: W 10-12 in Econ 111

TA Matthew Gibson magibson@ucsd.edu Session place/time Peterson 102; W 12:00pm-1:50pm ECON 125; Tu 2:00pm-4:00pm

Office. Office Hours

Course Objectives: Econ 100B analyzes the theory of the firm and markets when there is price taking behavior. Topics include the theory of production, commodity supply and input demand in competitive markets, and competitive market equilibrium.

Required Texts: (1) Perloff, Jeffrey M. (2011) Microeconomics: Theory and Applications with Calculus, 2nd edition. Pearson/Addison-Wesley. (2) Mark Machina's Econ 100ABC Math Handout.

Web Resources: You are encouraged to take advantage of the following supplemental material for the 100ABC sequence, available free over the Internet.

(1) Martin Osborne's intermediate mathematics tutorial:

http://www.economics.utoronto.ca/osborne/MathTutorial/index.html

(2) Preston McAfee's Introductory textbook (this material is at a level between most microeconomics principles textbooks and Perloff's more advanced treatment.) http://www.introecon.com/

Weekly Homework: Each week, I will post practice problems on Ted. They will not be graded. The best way to prepare for the exams is to form study groups and practice doing the problem sets together. I will post the answers after the problems are reviewed in TA sessions.

Exams: Grading will be based on three midterms (17% each) and a final examination (49%). The final exam will be cumulative. You must take all three midterms. All exams are closed book, and you may not use calculators and cell phones during the exams.

Regrade Requests: I will give back the midterm exams in class. You can ask for a regrade before you leave the room with your exam. Your whole exam will be regarded, and your score can go up or down. If you don't think you have enough time to look at your exam after the class, you can pick up your exam from my office during my office hours.

Schedule:

Week	Topic	Text Ch./Math Handout Section					
1	Theory of Production	Ch. 6					
2	Theory of Cost	Ch. 7					
	Midterm 1, August 15						
3	Profit Maximization and Supply	Ch. 8					
	Under Perfect Competition						
	Midterm 2, August 22						
4	Demand for Factors of Production;	Ch. 15					
	Equilibrium, Dynamics & Comparative	Ch. 9					
	Statics of Perfectly Competitive Markets						
	Midterm 3, August 29						
5	General Equilibrium	Ch. 10					
	Final, September 7						

FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U(x_1,,x_n)$ utility function	$p_1 \cdot x_1 + \dots + p_n \cdot x_n = I$ budget constraint	$x_1,,x_n$ commodity levels	$p_1,,p_n, I$ prices and income	$x_i(p_1,,p_n,I)$ regular demand functions	$V(p_1,,p_n,I)$ indirect utility function
Expenditure Minimization Problem	$p_1 \cdot x_1 + \dots + p_n \cdot x_n$ expenditure level	$U(x_1,,x_n) = u$ desired utility level	x ₁ ,,x _n commodity levels	$p_1,,p_n, u$ prices and utility level	$h_i(p_1,,p_n,u)$ compensated demand functions	$e(p_1,,p_n,u)$ expenditure function
Labor/Leisure Decision	<i>U</i> (<i>H</i> , <i>I</i>) utility function	$I = I_0 + w \cdot (168 - H)$ budget constraint	<i>H</i> , <i>I</i> leisure time, disposable inc.	<i>w</i> , <i>I</i> ₀ wage rate and nonwage income	$168 - H(w, I_0)$ labor supply function	V(w, I ₀) indirect utility function
Consumption/ Savings Decision	$U(c_1,c_2)$ utility function	$c_2 = I_2 + (1+i) \cdot (I_1 - c_1)$ budget constraint	c_1, c_2 consumption levels	I_1, I_2, i income stream and interest rate	$c_1(I_1, I_2, i), c_2(I_1, I_2, i)$ consumption functions	$V(I_1, I_2, i)$ indirect utility function
Long Run Cost Minimization	$w \cdot L + r \cdot K$ total cost	F(L,K) = Q desired output	<i>L</i> , <i>K</i> factor levels	<i>Q</i> , <i>w</i> , <i>r</i> desired output and factor prices	L(Q,w,r), K(Q,w,r) output-constrained factor demand functions	LTC(Q,w,r) long run total cost function
Long Run Profit Maximization (in terms of Q)	$P \cdot Q - LTC(Q, w, r)$ total profit	none	<i>Q</i> output level	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	<i>Q</i> (<i>P</i> , <i>w</i> , <i>r</i>) long run supply function	$\pi(P,w,r)$ long run profit function
Long Run Profit Maximization (in terms of L and K)	$P \cdot F(L,K) - w \cdot L - r \cdot K$ total profit	none	<i>L</i> , <i>K</i> factor levels	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	L(P,w,r), K(P,w,r) factor demand functions	$\pi(P,w,r)$ long run profit function