ECONOMICS 100A: MICROECONOMICS

Fall 2015
Section A MWF 2:00-2:50, Solis 107
Section B MWF 3:00-3:50, Solis 107

Maxim Sinitsyn, msinitsyn@ucsd.edu
Office Hours: Tu 1-3 in Econ Bldg 111

TAs
Sec. A: Jason Bigenho jbigenho@ucsd.edu
Sec. A: Jason Bigenho jbigenho@ucsd.edu
Sec. A: Wendy Zeng w5zeng@ucsd.edu
Sec. A: Erik Lillethun elilleth@ucsd.edu
Sec. B: Liz Hastings ehasting@ucsd.edu
Sec. B: Halbert Mun hmun@ucsd.edu
Sec. B: Xuan Ding x3ding@ucsd.edu
Sec. B: -- Rotating --

Session place/time
PETER 104; Tu 7:00p-7:50p
PETER 104; Tu 8:00p-8:50p
PETER 104; Th 7:00p-7:50p
PETER 104; Th 8:00p-8:50p
PETER 104; W 4:00-4:50p
PETER 104; W 5:00-5:50p
PETER 104; F 4:00p-4:50p
PETER 104; F 5:00p-5:50p

Office, Office Hours
ECON 116; M 12:00-1:00
ECON 116; M 12:00-1:00

ECON 127; Th 3:00-5:30
ECON 122; Th 8:30-11:00
SH237; W 9:30-11:30
SH206; F 9:30-11:30
SH206; M 10:00-12:00

Course Objectives: As the first class in the micro sequence, Econ 100A is designed to teach you how to set up, solve, and analyze optimization models and apply these mathematical models to the theory of the consumer (commodity demand, labor supply, and consumption/savings decisions). Finally, we will examine the fundamentals of decision making under risk and uncertainty.

Required Texts:
(1) Varian, H. R. 2014. Intermediate Microeconomics with Calculus. W. W. Norton \& Company, Inc.
(2) Mark Machina's Econ 100ABC Math Handout.

Video Handbook: The topics I cover in class are also explained in short video lectures from the Intermediate Microeconomics Video Handbook. The link to them is provided on Ted.

Web Resources: You are encouraged to take advantage of the following supplemental material for the 100ABC sequence, available free over the Internet.
(1) Martin Osborne's intermediate mathematics tutorial:
http://www.economics.utoronto.ca/osborne/MathTutorial/index.html
(2) Preston McAfee's Introductory textbook (this material is at a level between most microeconomics principles textbooks and Perloff's more advanced treatment.) http://www.introecon.com/

Weekly Homework: Each week on Friday, I will post practice problems on Ted. They will not be graded. The best way to prepare for the exams is to form study groups and practice doing the problem sets together. I will post the answers after the problems are reviewed in TA sessions.

Exams: Grading will be based on two midterms (25\% each) and a final examination (50\%). The final exam will be cumulative. You must take both midterms. All exams are closed book, and you may not use calculators and cell phones during the exams.

Regrade Requests: The TAs will give back the midterm exams in their discussion sections. By then, a solution to the exam would be posted on Ted. You can ask for a regrade before you leave the room with your exam. Your whole exam will be regraded, and your score can go up or down. If you don't think you have enough time to look at your exam after the section, you can pick up your exam from my office during my office hours the following week.

Schedule:

Week	Topic	Text Ch./ Math Handout Section	Video
		Sections B and C	A1, A2
1	Mathematical Review \#1	C1, C2a	
2	Consumer Preferences, Utility, Budget Constraint	2, 3, and 4	
	Midterm 1, October 19 at 8pm (Sec. A in Peter 108; Sec. B in Peter 110);		
3	Mathematical Review \#2	Sections D and E	A4
4,5	Utility Maximization and Demand Functions	5 and 6	C2
6,7	Comparative Statics of Demand	8	C3-C7
	Midterm 2, November 23 at 8pm (Sec. A in Peter 108; Sec. B in Peter 110);		
8	Supply of Labor	9	C8
9	Supply of Saving	10	C9
10	Decision Making Under Risk and Uncertainty	12	C10

FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U\left(x_{1}, \ldots, x_{n}\right)$ utility function	$p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n}=I$ budget constraint	$\begin{gathered} x_{1}, \ldots, X_{n} \\ \text { commodity } \\ \text { levels } \end{gathered}$	p_{1}, \ldots, p_{n}, I prices and income	$\begin{aligned} & x_{i}\left(p_{1}, \ldots, p_{n}, l\right) \\ & \text { regular demand } \\ & \text { functions } \end{aligned}$	$\begin{aligned} & V\left(p_{1}, \ldots, p_{n}, l\right) \\ & \text { indirect utility } \\ & \text { function } \end{aligned}$
Expenditure Minimization Problem	$p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n}$ expenditure level	$U\left(x_{1}, \ldots, x_{n}\right)=u$ desired utility level	$\begin{gathered} x_{1}, \ldots, X_{n} \\ \text { commodity } \\ \text { levels } \end{gathered}$	p_{1}, \ldots, p_{n}, u prices and utility level	$h_{i}\left(p_{1}, \ldots, p_{n}, u\right)$ compensated demand functions	$\begin{aligned} & e\left(p_{1}, \ldots, p_{n}, u\right) \\ & \text { expenditure } \\ & \text { function } \end{aligned}$
Labor/Leisure Decision	$U(H, I)$ utility function	$\begin{gathered} I=I_{0}+w \cdot(168-H) \\ \text { budget constraint } \end{gathered}$	H, I leisure time, disposable inc	w, I_{0} wage rate and nonwage income	$168-H\left(w, I_{0}\right)$ labor supply function	$V\left(w, I_{0}\right)$ indirect utility function
Consumption/ Savings Decision	$\begin{aligned} & U\left(c_{1}, c_{2}\right) \\ & \text { utility function } \end{aligned}$	$c_{2}=I_{2}+(1+i) \cdot\left(I_{1}-c_{1}\right)$ budget constraint	$\begin{gathered} c_{1}, c_{2} \\ \text { consumption } \\ \text { levels } \end{gathered}$	I_{1}, I_{2}, i income stream and interest rate	$c_{1}\left(I_{1}, I_{2}, i\right), c_{2}\left(I_{1}, I_{2}, i\right)$ consumption functions	$V\left(I_{1}, I_{2}, i\right)$ indirect utility function
Long Run Cost Minimization	$w \cdot L+r \cdot K$ total cost	$F(L, K)=Q$ desired output	$\begin{gathered} L, K \\ \text { factor levels } \end{gathered}$	Q, w, r desired output and factor prices	$\begin{gathered} L(Q, w, r), K(Q, w, r) \\ \text { output-constrained } \\ \text { factor demand functions } \end{gathered}$	LTC(Q,w,r) long run total cost function
Long Run Profit Maximization (in terms of Q)	$\begin{gathered} P \cdot Q-L T C(Q, w, r) \\ \text { total profit } \end{gathered}$	none	output level	P, w, r output price and factor prices	$\begin{aligned} & Q(P, w, r) \\ & \text { long run supply } \\ & \text { function } \end{aligned}$	$\pi(P, w, r)$ long run profit function
Long Run Profit Maximization (in terms of L and K)	$\begin{gathered} P \cdot F(L, K)-w \cdot L-r \cdot K \\ \text { total profit } \end{gathered}$	none	L, K factor levels	P, w, r output price and factor prices	$L(P, w, r), K(P, w, r)$ factor demand functions	$\begin{aligned} & \pi(P, w, r) \\ & \text { long run profit } \\ & \text { function } \end{aligned}$

