ECON 200A MICROECONOMICS: DECISIONS

Fall 2012

Prof. Mark Machina

TA: Troy Kravitz

Tuesday, Thursday 11:30am-1:20pm

Office: Econ Bldg 217
Sequoyah Hall 206

Economics Bldg 300

Office Hours: Wed 9am-1pm
Office Hours: Thu 9:30-11:30

The topic of this course is the economic theory of choice and demand.

The texts for the 200A/B/C sequence are:
Kreps, D., A Course in Microeconomic Theory. Princeton: Princeton Univ. Press, 1990.
Mas-Colell, A., M. Whinston and J. Green ("MWG"), Microeconomic Theory, Oxford: Oxford Univ. Press, 1995.

Varian, H., Microeconomic Analysis, 3rd ed. New York: W.W. Norton \& Co., 1992.

There is also a Mathematical Handout for this course, and additional in-class handouts.
An extremely useful book of problems, designed to hone your analytical ability is:
Dixon, P., S. Bowles and D. Kendrick, Notes and Problems in Microeconomic Theory, 1985, (Amsterdam: North-Holland)

Other useful readings include the relevant chapters of:
Debreu, G., Theory of Value, 1959, (New York: Wiley).
Henderson, J. and R. Quandt, Microeconomic Theory: A Mathematical Approach, 3rd ed., 1980 (New York: McGraw-Hill)

Malinvaud, E., Lectures on Microeconomic Theory, 1972 (Amsterdam: North-Holland)
Russell, R. and M. Wilkinson, Microeconomics: A Synthesis of Modern and Neoclassical Theory, 1979, (New York: Wiley)

EXAMS: The final exam will be on Wednesday, December 12, 11:30am-2:30pm. The exam will cover the material from both Machina's and Starr's portions of the course.

ECONOMICS 200A COURSE OUTLINE

I. INTRODUCTION AND BASIC MATHEMATICAL IDEAS

a. Some Introductory Ideas

Domain of Microeconomic Analysis
Role of Models in Economics
The Circular Flow Diagram
Stocks versus Flows and the Dimensions of Economic Variables
b. Elasticity
c. Level Curves of Functions
d. Possible Properties of Functions

Cardinal vs. Ordinal Properties of Functions
Scale Invariance and Constant Returns to Scale
Homogeneous Functions and Euler's Theorem
Homotheticity
Concavity and Convexity
Quasiconcavity and Quasiconvexity
Additive and Multiplicative Separability
e. Systems of Linear Equations and Cramer's Rule

II. MATHEMATICS OF OPTIMIZATION

a. The General Structure of Optimization Problems

Objective Functions, Control Variables, Parameters, Constraints
Solution Functions and Optimal Value Functions
b. Unconstrained Optimization

First Order Conditions
Second Order Conditions
c. Constrained Optimization

First Order Conditions
Lagrangians
Corner Solutions
Shadow Prices of Constraints
Second Order Conditions
d. Comparative Statics of Solution Functions - Implicit Differentiation

Differentiation of First Order Conditions
A Related Application: Comparative Statics of Equilibria
e. Comparative Statics of Optimal Value Functions - The Envelope Theorem

Unconstrained Case: Differentiation of the Objective Function
Constrained Case: Differentiation of the Lagrangian

III. CONSUMER PREFERENCES AND THE UTILITY FUNCTION

a. The Choice Space

The Objects of Choice
The Relevant Time Period
The Issue of Divisibility

b. The Consumer's Preference Ranking

Weak Preference, Strict Preference and Indifference
Preferences are Defined over Commodity Bundles, not Individual Commodities
General Properties of the Preference Ranking:
Completeness, Reflexivity and Transitivity
Continuity
Alternative Definitions of Continuity
Example of Non-Continuous Preferences: Lexicographic Preferences
Possible Additional Properties of the Preference Ranking
Weak Monotonicity/Strong Monotonicity
Local Nonsatiation
Weak Convexity/Convexity/Strong Convexity
Equivalent Variation versus Compensation Variation
c. Indifference Curves and the Marginal Rate of Substitution

Better-Than Sets, Worse-Than Sets and Indifference Sets
Typical Properties of Indifference Curves
One Through Each Point
Downward Sloping and "Thin"
Can't Cross
Marginal Rate of Substitution (MRS)
Definition of MRS
Graphical Interpretation: Slope of the Indifference Curve
Convexity of Preferences and Hypothesis of Diminishing MRS

d. Utility Functions

Representation of a Preference Ranking by a Utility Function
Monotonic Invariance of Utility Functions
Possible Properties of a Utility Function:
Weak/Strong Monotonicity
Weak/Strong Quasiconcavity
Homotheticity
Additive/Multiplicative Separability
Expressing the MRS in Terms of Marginal Utilities
Monotonic Invariance of the MRS
Hypothesis of Diminishing MRS
Algebraic Condition for Hypothesis of Diminishing MRS
Important Examples of Utility Functions
Linear
Cobb-Douglas
Leontief
Constant Elasticity of Substitution (CES)

IV. UTILITY MAXIMIZATION AND DEMAND FUNCTIONS

a. Utility Maximization Subject to a Budget Constraint

Graphical Illustration
First Order Conditions for Utility Maximization
Two Interpretations of the First Order Conditions
Monotonic Invariance of the First Order Conditions
"Marginal Utility of Income"
Second Order Conditions (Hypothesis of Diminishing MRS)
Algebraic Examples: Cobb-Douglas, Leontief, Linear
Corner Solutions
b. Regular or "Marshallian" Demand Functions

Definition of Regular Demand Functions
Examples: Cobb-Douglas, Leontief, Linear
General Properties of Demand Functions:
Not Necessarily Nonincreasing in "Own Price"
Walras' Law
Scale Invariant in Prices and Income
Relationship between Price Elasticities \& Income Elasticity for a Good Market Demand Functions
c. The Indirect Utility Function

Properties:
Increasing in Income, Nonincreasing in Prices
Scale Invariant in Prices and Income
Quasiconvex in Prices and Income
Utility-Income Curves
Price Indifference Curves
Effect of Monotonic Transformation of Utility
Examples: Cobb-Douglas, Leontief, Linear

d. Compensated Demand Functions and the Expenditure Function

The Expenditure Minimization Problem
First Order Conditions for Expenditure Minimization
Compensated or "Hicksian" Demand Functions
Properties:
Scale Invariant in Prices
Nonincreasing in "Own Price"
Identities Linking the Marshallian and Hicksian Demand Functions
Examples: Cobb-Douglas, Leontief, Linear
The Expenditure Function
Properties:
Increasing in Utility, Nondecreasing in Prices
Homogeneous of Degree One in Prices
Concave in Prices
Identities Linking the Expenditure and Indirect Utility Functions

V. COMPARATIVE STATICS OF DEMAND

a. Changes in Income

Income-Consumption Loci
Engel Curves: Definition and Graphical Derivation
Income Elasticity
Superior, Normal and Inferior Goods
Income Elasticity and Budget Shares
Relationship Between Income Elasticities of All Goods
Algebraic Derivation of the Effect of an Income Change
Relationship Between Income Elasticities for All Goods
b. Changes in Prices

Price-Consumption Loci
Graphical Derivation of Marshallian Demand Curves
Own Price Elasticity
Price Elasticity and Budget Shares
Cross Price Elasticity
Gross Substitutes and Gross Complements
Algebraic Derivation of the Effect of a Price Change
Relationship Between All Price and Income Elasticities for a Good
c. Compensated Price Changes

Graphical Illustration of a Compensated Price Change
Graphical Illustration of a Compensated Demand Curves
Algebraic Derivation of the Effect of a Compensated Price Change
Nonpositivity of Own Compensated Price Effect
Compensated Cross Price Elasticity
Net Substitutes and Net Complements
d. The Slutsky Equation

Expressing Each of the Three Basic Changes in Terms of the Other Two Graphical Illustration
Algebraic Formulation
Giffen Goods
e. Some Important Results

Economic Interpretation of the Lagrangian Multiplier
Roy's Identity (Linking the Indirect Utility and Demand Functions)
Relationship Between the Expenditure and Compensated Demand Functions
A One-Line Proof of the Slutsky Equation
Justification of the Two-Good Approach: The Composite Commodity Theorem

VI. SUPPLY OF FACTORS OF PRODUCTION

a. Supply of Labor: The Labor-Leisure Decision

Income-Leisure Space and the Labor-Leisure Decision
First Order Conditions for Optimal Supply of Labor
Comparative Statics: Income and Substitution Effects
Backward Bending Supply of Labor Curves
Kinked Budget Lines and the Overtime Decision
b. Supply of Capital: Intertemporal Choice and the Consumption-Savings Decision

Intertemporal Income and Consumption Streams
Interest Rates and Discounted Present Value of a Stream
Relationship between Rental Market and Sales Market for Capital
Intertemporal Utility Maximization
First Order Conditions and Interpretation
Comparative Statics: Income and Substitution Effects

VII. CHOICE UNDER UNCERTAINTY

a. Objective Uncertainty

Objects of Choice and Preference Functionals
Structure of Expected Utility Preferences
Axiomatic Characterization of Expected Utility
Arrow-Pratt Characterization of Comparative Risk Aversion
Risk Aversion and Wealth
Rothschild-Stiglitz Characterization of Comparative Risk
Demand for Insurance
b. Subjective Uncertainty

States, Events, Outcomes and Acts
Probabilistic Sophistication
Expected Utility Preferences over Subjective Acts
State-Dependent Utility
c. Evidence and Alternative Models

Evidence on the Independence Axiom
Non-Expected Utility Preference Functionals
Generalized Expected Utility Analysis
Evidence on Probabilistic Sophistication and the Stability of Preferences
VIII. SPECIFICATION AND ESTIMATION OF DEMAND, COST AND SUPPLY
a. Parametric Estimation of Demand Systems
b. Parametric Estimation of Production and Cost Systems
c. Nonparametric Testing of the Maximization Hypothesis

ECONOMICS 200A READINGS BY TOPIC

I. Introduction and Basic Mathematical Ideas

Required: Math Handout, Sections A through F; Kreps Ch. 1
Also suggested: MWG App.A-E; Varian Ch. 26
II. Mathematics of Optimization

Required: Mathematical Handout, Sections G through I
Also suggested: Kreps App.1; MWG App. J-L; Varian Ch. 27

III. Consumer Preferences and the Utility Function

Required: Kreps Sect.2.1; MWG Ch.1, Sects.2A -2C,3A - 3C; Varian Sect. 7.1
Also suggested: Suggested readings will be provided in an in-class handout

IV. Utility Maximization and Demand Functions

Required: Kreps Ch.2; MWG Sects.2D,3D; Varian Sects.7.2-7.5
Also suggested: Henderson \& Quandt, Sects.2.1-2.3

V. Comparative Statics of Demand

Required: MWG Sects.2E-2F, 3E-3J; Varian Chs. 8, 9
Also suggested: MWG Ch.4; Varian Ch.10, Henderson \& Quandt, Sects.2.5-2.7

VI. Supply of Factors of Production

Required: MWG Sects.20A-20D; Varian Ch. 19
Also suggested: Kreps Ch.4, Sect.6.5; MWG Sects.19A-19B

VII. Choice Under Uncertainty

Required: Kreps Ch.3; MWG Ch.6; Varian Ch.11;
Required: Pratt J. (1964). "Risk Aversion in the Small and in the Large," Econometrica 32, 122-136.
Also suggested: Rothschild, M. \& J. Stiglitz (1970). "Increasing Risk: I. A Definition," Journal of Economic Theory 2, 225-243;
Machina, M. (1987). "Choice Under Uncertainty: Problems Solved and Unsolved," Journal of Economic Perspectives, Summer 1987.
VIII. Specification and Estimation of Demand, Cost and Supply

Required: Varian Ch. 12
Required: Ch. 3 of Deaton \& Muellbauer (1980), Economics and Consumer Behavior.

FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U\left(x_{1}, \ldots, x_{n}\right)$ utility function	$p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n}=I$ budget constraint	x_{1}, \ldots, x_{n} commodity levels	p_{1}, \ldots, p_{n}, I prices and income	$\begin{gathered} x_{i}\left(p_{1}, \ldots, p_{n}, l\right) \\ \text { regular demand } \\ \text { functions } \end{gathered}$	$V\left(p_{1}, \ldots, p_{n}, I\right)$ indirect utility function
Expenditure Minimization Problem	$p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n}$ expenditure level	$U\left(x_{1}, \ldots, x_{n}\right)=u$ desired utility level	x_{1}, \ldots, x_{n} commodity levels	p_{1}, \ldots, p_{n}, u prices and utility level	$\begin{aligned} & h_{i}\left(p_{1}, \ldots, p_{n}, u\right) \\ & \text { compensated demand } \\ & \text { functions } \end{aligned}$	$e\left(p_{1}, \ldots, p_{n}, u\right)$ expenditure function
Labor/Leisure Decision	$\begin{gathered} U(H, I) \\ \text { utility function } \end{gathered}$	$I=I_{0}+w \cdot(168-H)$	H, I leisure time, disposable inc.	w, I_{0} wage rate and nonwage income	$\begin{gathered} L\left(w, I_{0}\right) \equiv 168-H\left(w, I_{0}\right) \\ \text { labor supply function } \end{gathered}$	$V\left(w, I_{0}\right)$ indirect utility function
Intertemporal Optimization	$U\left(c_{1}, \ldots, c_{n}\right)$ utility function	$\begin{aligned} & \sum_{t=1}^{n}(1+i)^{t} \cdot\left(I_{t}-c_{t}\right)=0 \\ & \text { budget constraint } \end{aligned}$	c_{1}, \ldots, c_{n} consumption levels	I_{1}, \ldots, I_{n}, i income stream and interest rate	$c_{i}\left(I_{1}, \ldots, I_{n}, i\right)$ consumption functions	$\begin{gathered} V\left(I_{1}, \ldots, I_{n}, i\right) \\ \text { indirect utility } \\ \text { function } \end{gathered}$
Long Run Cost Minimization	$w \cdot L+r \cdot K$ total cost	$F(L, K)=Q$ desired output	L, K factor levels	Q, w, r desired output and factor prices	$L(Q, w, r), K(Q, w, r)$ output-constrained factor demands	$\begin{aligned} & L T C(Q, w, r) \\ & \text { long run total cost } \\ & \text { function } \end{aligned}$
Long Run Profit Maximization (in terms of Q)	$\begin{gathered} P \cdot Q-L T C(Q, w, r) \\ \text { total profit } \end{gathered}$	none	$\begin{gathered} Q \\ \text { output level } \end{gathered}$	P, w, r output price and factor prices	$Q(P, w, r)$ long run supply function	$\pi(P, w, r)$ long run profit function
Long Run Profit Maximization (in terms of L, K)	$\begin{gathered} P \cdot F(L, K)-w \cdot L-r \cdot K \\ \quad \text { total profit } \end{gathered}$	none	$\begin{gathered} L, K \\ \text { factor levels } \end{gathered}$	$\begin{aligned} & P, w, r \\ & \text { output price and } \\ & \text { factor prices } \end{aligned}$	$L(P, w, r), K(P, w, r)$ factor demand functions	$\pi(P, w, r)$ long run profit function
Long Run Profit Maximization (in terms of Q, L, K)	$\begin{gathered} P \cdot Q-w \cdot L-r \cdot K \\ \text { total profit } \end{gathered}$	$\begin{gathered} F(L, K)=Q \\ \text { production function } \end{gathered}$	Q, L, K output and factor levels	P, w, r output price and factor prices	$\begin{gathered} Q(P, w, r), L(P, w, r), K(P, w, r) \\ \text { output supply \& factor } \\ \text { demand functions } \end{gathered}$	$\begin{gathered} \pi(P, w, r) \\ \text { long run profit } \\ \text { function } \end{gathered}$

