ECONOMICS 100A: MICROECONOMICS

Fall 2012 Tues, Thur 9:30-10:50am Center Hall 101 **Professor Mark Machina** Office: Econ Bldg 217 Office Hrs: Wed 9am-1pm (See other side for Section times & locations, and TA's offices & office hours) **TOPIC** TEXT CHAPTER/MATH HANDOUT SECTION **DATE** Introduction & Mathematical Review #1 Sep. 27 Ch.1, 2.1, 2.5/Sects. A, B Oct. 2 Mathematical Review #1 (cont.) Sect.C Oct. 4 Consumer Preferences: Utility Functions and Indifference Curves Ch. 3.1, 3.2 Consumer Preferences: Utility Functions and Indifference Curves (cont.) Oct. 9 Oct. 11 Mathematical Review #2 Sects. D, E Oct. 16 Mathematical Review #2 (cont.) Oct. 18 Utility Maximization and Demand Functions Ch. 3.3, 3.4, 4.1 Oct. 23 (Tuesday) 1st Midterm Exam Oct. 25 Utility Maximization and Demand Functions (cont.) Utility Maximization and Demand Functions (cont.) Oct. 30 Comparative Statics of Demand Ch. 4.2, 4.3 Nov. 1 Nov. 6 Comparative Statics of Demand (cont.) Nov. 8 Comparative Statics of Demand (cont.) Nov. 13 Comparative Statics of Demand (cont.) Nov. 15 (Thursday) 2nd Midterm Exam Nov. 20 Supply of Labor: The Labor-Leisure Decision Ch. 5.5 Nov. 27 Supply of Capital: Consumption-Saving Decision Nov. 29 Supply of Capital: Consumption-Saving (cont.) Dec. 4 Decision Making under Risk and Uncertainty (cont.) Ch. 16.1, 16.2 Dec. 6 Decision Making under Risk and Uncertainty (cont.) FINAL EXAM (Thursday Dec 13, 8am-11am) (location TBA)

TEXT & READINGS: *Microeconomics: Theory and Applications, Second Custom Edition for UCSD*, by Jeffrey Perloff, Addison Wesley, 2011. There is also a Soft Reserve Package which contains the Math Handout, practice problems, and old exam questions. Although we will go over some of these questions in office hours and review sessions, the best way to prepare for the exam is to form study groups and practice doing them together.

EXAMS: Grades are determined on the basis of two Midterm Exams and a Final Exam.

COURSE WEB PAGE: The course web page is at:

ECON 100A FALL 2012 SECTION TIMES, TAS' OFFICES & OFFICE HOURS

Section	Day, Time	Room	TA	Office & Office Hours	
B01	Mon 4:00pm-4:50pm	Center 222	Travis Brayak tbrayak@ucsd.edu	Sequoyah Hall 224, Mon 10:00-12:00	
B02	Wed 8:00am- 8:50am	Center 222	Travis Brayak tbrayak@ucsd.edu	Sequoyah Hall 224, Mon 10:00-12:00	
B03	Thu 6:00pm- 6:50pm	Peterson 102	Michael Kuhn mkuhn@ucsd.edu	Economics Bldg. 122, Thu 2:30-4:30	
B04	Fri 1:00pm 1:50pm	Center 222	Michael Kuhn mkuhn@ucsd.edu	Economics Bldg. 122, Thu 2:30-4:30	

ECON 100A COURSE OUTLINE - Fall 2012

I. INTRODUCTION

- a. Domain of Microeconomic Analysis
- b. Circular Flow Diagram
- c. Stocks vs. Flows and the Dimensions of Economic Variables

II. MATHEMATICAL REVIEW #1

a. Calculus Review (Math Handout, Section A)

Derivatives, Partial Derivatives and the Chain Rule

Approximation Formulas for Small Changes in Functions (Total Differentials)

b. Elasticity (Math Handout, Section B)

Absolute, Proportionate and Percentage Changes in Variables

Definition of Elasticity

Constant Elasticity Functions

c. Level Curves of Functions (Math Handout, Section C)

Definition and Graphical Illustration

Algebraic Formula for a Level Curve

Formula for the Slope of a Level Curve

III. CONSUMER PREFERENCES: UTILITY FUNCTIONS & INDIFFERENCE CURVES

a. Commodities, Commodity Bundles and Preferences

Commodities are Typically Flows, not Stocks

Issue of Divisibility

The Relevant Time Period

b. Preference Relations and Utility Functions

Preferences are defined over Commodity Bundles, not Individual Commodities

Weak Preference, Strict Preference and Indifference

Utility Functions and Total Utility Curves

Important Examples: Linear, Cobb-Douglas, Leontief

Marginal Utility and Marginal Utility Curves

Hypothesis of Diminishing Marginal Utility

Monotonic Transformations of Utility Functions

c. Indifference Curves and the Marginal Rate of Substitution

Deriving a Consumer's Indifference Curves from Their Utility Function

General Properties of Indifference Curves:

One Through Every Commodity Bundle

Downward Sloping and Can't Cross

Marginal Rate of Substitution (MRS)

Graphical Interpretation: Slope of the Indifference Curve

Algebraic Formula: Ratio of Marginal Utilities

Hypothesis of Diminishing Marginal Rate of Substitution

IV. MATHEMATICAL REVIEW #2

a. Scale Properties of Functions (Math Handout, Section D)

b. Solving Optimization Problems (Math Handout, Section E)

General Structure of Optimization Problems

First and Second Order Conditions for Unconstrained Optimization Problems

First Order Conditions for Constrained Optimization Problems

c. Inequality Constraints and Corner Solutions

V. UTILITY MAXIMIZATION AND DEMAND FUNCTIONS

a. Utility Maximization Subject to a Budget Constraint

Graphical Illustration

First Order Conditions for Utility Maximization

Two Interpretations of the First Order Conditions

Second Order Conditions (Hypothesis of Diminishing MRS)

Corner Solutions: Graphical Illustration and Algebraic Condition

Indirect Utility Functions and their Properties

b. Regular ("Marshallian") Demand Curves and Demand Functions

Plotting Regular Demand Curves

Regular Demand Functions

General Properties of Demand Functions:

Walras' Law

Scale Invariant in Prices and Income

Relationship between Price Elasticities & Income Elasticity for a Good

Examples: Cobb-Douglas, Leontief, Linear

Market Demand Functions

VI. COMPARATIVE STATICS OF DEMAND

a. Income Changes

Income-Consumption Locus

Engel Curves: Definition and Graphical Derivation

Income Elasticity

Superior, Normal and Inferior Goods

Income Elasticity and Budget Shares

Relationship Between Income Elasticities of All Goods

Algebraic Derivation of the Effect of an Income Change

b. Price Changes

Price-Consumption Locus

Graphical Derivation of Marshallian Demand Curves

Own Price Elasticity

Price Elasticity and Expenditures

Cross Price Elasticity

Gross Substitutes and Gross Complements

Algebraic Derivation of the Effect of a Price Change

c. Compensated Price Changes and Compensated ("Hicksian") Demand Functions

Graphical Illustration of a Compensated Price Change

The Expenditure Minimization Problem

Compensated Demand Functions and their Properties

Expenditure Functions and their Properties

Algebraic Derivation of the Effect of a Compensated Price Change

d. The Slutsky Equation

Expressing Each of the Three Basic Changes in Terms of the Other Two

Graphical Illustration

Algebraic Formulation and Informal Proof

Giffen Goods

e. Consumer Surplus and Welfare Analysis

Consumer Surplus

Equivalent and Compensating Variation

VII. SUPPLY OF LABOR: THE LABOR-LEISURE DECISION

Income-Leisure Space and the Labor-Leisure Decision First Order Conditions for Optimal Supply of Labor Comparative Statics: Income and Substitution Effects Backward Bending Supply of Labor Curves Kinked Budget Lines and the Overtime Decision

VIII. SUPPLY OF CAPITAL: THE CONSUMPTION-SAVINGS DECISION

Intertemporal Income and Consumption Streams
Interest Rates and Discounted Present Value of a Stream
Intertemporal Utility Maximization
First Order Conditions and Interpretation
Comparative Statics: Income and Substitution Effects

IX. DECISION MAKING UNDER RISK AND UNCERTAINTY

a. Outcomes, Lotteries and Expected Value

Choice over Lotteries Expected Value The St. Petersburg Paradox

b. Expected Utility

Two-Stage Lotteries and the Independence Axiom von Neumann-Morgenstern Utility Functions and Expected Utility

c. Risk Aversion

Properties of Risk Averse Preferences Arrow-Pratt Measure of Risk Aversion Risk Aversion and Wealth

- d. Measures of Risk Aversion
- e. Demand for Insurance
- f. Investment in a Risky Asset

FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U(x_1,,x_n)$ utility function	$p_1 \cdot x_1 + \dots + p_n \cdot x_n = I$ budget constraint	$x_1,,x_n$ commodity levels	p ₁ ,,p _n , I prices and income	$x_i(p_1,,p_n,I)$ regular demand functions	$V(p_1,,p_n,I)$ indirect utility function
Expenditure Minimization Problem	$p_1 \cdot x_1 + \dots + p_n \cdot x_n$ expenditure level	$U(x_1,,x_n) = u$ desired utility level	$x_1,,x_n$ commodity levels	$p_1,,p_n$, u prices and utility level	$h_i(p_1,,p_n,u)$ compensated demand functions	$e(p_1,,p_n,u)$ expenditure function
Labor/Leisure Decision	U(H,I) utility function	$I = I_0 + w \cdot (168 - H)$ budget constraint	H, I leisure time, disposable inc.	w, I ₀ wage rate and nonwage income	$168 - H(w, I_0)$ labor supply function	$V(w, I_0)$ indirect utility function
Consumption/ Savings Decision	$U(c_1,c_2)$ utility function	$c_2 = I_2 + (1+i) \cdot (I_1 - c_1)$ budget constraint	c_1, c_2 consumption levels	I ₁ , I ₂ , i income stream and interest rate	$c_1(I_1, I_2, i), c_2(I_1, I_2, i)$ consumption functions	$V(I_1, I_2, i)$ indirect utility function
Long Run Cost Minimization	$w \cdot L + r \cdot K$ total cost	F(L,K) = Q desired output	L, K factor levels	Q, w, r desired output and factor prices	L(Q,w,r), K(Q,w,r) output-constrained factor demand functions	LTC(Q,w,r) long run total cost function
Long Run Profit Maximization (in terms of Q)	$P \cdot Q - LTC(Q, w, r)$ total profit	none	Q output level	P, w, r output price and factor prices	Q(P,w,r) long run supply function	$\pi(P,w,r)$ long run profit function
Long Run Profit Maximization (in terms of L and K)	$P \cdot F(L,K) - w \cdot L - r \cdot K$ total profit	none	L, K factor levels	P, w, r output price and factor prices	L(P,w,r), K(P,w,r) factor demand functions	$\pi(P, w, r)$ long run profit function