ECONOMICS 100A: MICROECONOMICS

Fall 2009		Tues, Thur 11:00am-12:20pm	Warren Lecture Hall 2001			
Professor Mark Machina		Office: Econ Bldg 217	Office Hours: Wed 8-noon			
TA's: Michael Futch		Sequoyah Hall 228	Tues 3-5pm			
Matthew Niedzwiecki		Econ Bldg 123	Thurs 1-3pm			
Ketki Sheth		Sequoyah Hall 237	Wed 2:30-4:30pm			
Section 1		Wednesday 5:00-5:50pm	Cog Sci Bldg 001			
Section 2		Wednesday 6:00-6:50pm	Cog Sci Bldg 001			
DATE		ΤΟΡΙΟ	TEXT/MATH HANDOUT			
Sep. 24	Introduction & Math	Ch. 1/Sects. A, B				
Sep. 29	Mathematical Review #1 (continued) 2/					
Oct. 1	Consumer Preferences: Utility Functions and Indifference Curves 3.					
Oct. 6	Consumer Preferences: Utility Functions and Indifference Curves (cont.) 3.2					
Oct. 8	Mathematical Review	D,E				
Oct. 13	Utility Maximization	3.3, 3.4				
Oct. 15	Utility Maximization	d) 4.1				
Oct. 20	(Tuesday) 1st Midterm Exam (drop date is Oct 23)					
Oct. 22	Consumer Surplus a	5.1-5.4				
Oct. 27	Mathematical Review	F,G,H				
Oct. 29	Mathematical Review	F,G,H				
Nov. 3	Comparative Statics	4.2				
Nov. 5	Comparative Statics	4.3				
Nov. 10	Comparative Statics	4.4,4.5				
Nov. 12	Supply of Labor: Th	5.5				
Nov. 17	(Tuesday) 2nd Mid	term Exam				
Nov. 19	Supply of Capital: T	15.4				
Nov. 24	Decision Making un	16.1, 16.2				
Dec. 1	Decision Making un	d) 16.3, 16.4				
Dec. 3	Decision Making un	d) 16.3, 16.4				
Dec. 9	(Wednesday) FINA	LEXAM 11:30am-2:30pm	(location TBA)			

TEXT & READINGS: *Microeconomics: Theory and Applications with Calculus* (1st Ed.) by Jeffrey Perloff, Addison-Wesley, 2008. There is also a Soft Reserve Package which contains the Math Handout, practice problems, and old exam questions. You are responsible for all the material in the assigned portions of the text and the Math Handout.

EXAMS: Grades are determined on the basis of two Midterm Exams and a Final Exam.

COURSE WEB PAGE: The course web page is at:

www.econ.ucsd.edu/~mmachina/courses/ECON_100A/ECON_100A.htm

ECON 100A COURSE OUTLINE - Fall 2009

I. INTRODUCTION

- a. Domain of Microeconomic Analysis
- **b.** Circular Flow Diagram
- c. Stocks vs. Flows and the Dimensions of Economic Variables

II. MATHEMATICAL REVIEW #1

a. Calculus Review (Math Handout, Section A) Derivatives, Partial Derivatives and the Chain Rule Approximation Formulas for Small Changes in Functions (Total Differentials)

b. Elasticity (Math Handout, Section B)

Absolute, Proportionate and Percentage Changes in Variables Definition of Elasticity Constant Elasticity Functions

c. Level Curves of Functions (Math Handout, Section C) Definition and Graphical Illustration

Algebraic Formula for a Level Curve Formula for the Slope of a Level Curve

III. CONSUMER PREFERENCES: UTILITY FUNCTIONS & INDIFFERENCE CURVES

a. Commodities, Commodity Bundles and Preferences

Commodities are Typically *Flows*, not *Stocks* Issue of Divisibility The Relevant Time Period

b. Preference Relations and Utility Functions

Preferences are defined over Commodity Bundles, *not* Individual Commodities Weak Preference, Strict Preference and Indifference Utility Functions and Total Utility Curves

Important Examples: Linear, Cobb-Douglas, Leontief

Marginal Utility and Marginal Utility Curves

Hypothesis of Diminishing Marginal Utility

Monotonic Transformations of Utility Functions

c. Indifference Curves and the Marginal Rate of Substitution

Deriving a Consumer's Indifference Curves from Their Utility Function General Properties of Indifference Curves:

One Through Every Commodity Bundle

Downward Sloping and Can't Cross

Marginal Rate of Substitution (MRS)

Graphical Interpretation: Slope of the Indifference Curve

Algebraic Formula: Ratio of Marginal Utilities

Hypothesis of Diminishing Marginal Rate of Substitution

IV. MATHEMATICAL REVIEW #2

- a. Scale Properties of Functions (Math Handout, Section D)
- b. Solving Optimization Problems (Math Handout, Section E) General Structure of Optimization Problems
 First and Second Order Conditions for Unconstrained Optimization Problems
 First Order Conditions for Constrained Optimization Problems
- c. Inequality Constraints and Corner Solutions

V. UTILITY MAXIMIZATION AND DEMAND FUNCTIONS

a. Utility Maximization Subject to a Budget Constraint

Graphical Illustration
First Order Conditions for Utility Maximization
Two Interpretations of the First Order Conditions
Second Order Conditions (Hypothesis of Diminishing MRS)
Corner Solutions: Graphical Illustration and Algebraic Condition

b. Regular ("Marshallian") Demand Curves and Demand Functions

Plotting Regular Demand Curves Regular Demand Functions General Properties of Demand Functions: Walras' Law Scale Invariant in Prices and Income Relationship between Price Elasticities & Income Elasticity for a Good Examples: Cobb-Douglas, Leontief, Linear Market Demand Functions

c. Consumer Surplus and Welfare Analysis

Indirect Utility Functions and their Properties Consumer Surplus Equivalent and Compensating Variation Expenditure Functions

VI. MATHEMATICAL REVIEW #3

- a. Comparative Statics of Solution Functions (Math Handout, Section F)
- b. Comparative Statics of Equilibria (Math Handout, Section G)
- c. Comparative Statics of Optimal Value Functions (Math Handout, Section H)

VII. COMPARATIVE STATICS OF DEMAND

a. Income Changes

Income-Consumption Locus Engel Curves: Definition and Graphical Derivation Income Elasticity Superior, Normal and Inferior Goods Income Elasticity and Budget Shares Relationship Between Income Elasticities of All Goods Algebraic Derivation of the Effect of an Income Change

b. Price Changes

Price-Consumption Locus Graphical Derivation of Marshallian Demand Curves Own Price Elasticity Price Elasticity and Expenditures Cross Price Elasticity Gross Substitutes and Gross Complements Algebraic Derivation of the Effect of a Price Change

c. Compensated Price Changes and Compensated ("Hicksian") Demand Functions

Graphical Illustration of a Compensated Price Change Graphical Derivation of Compensated Demand Curves Algebraic Derivation of Compensated Demand Functions Algebraic Derivation of the Effect of a Compensated Price Change

d. The Slutsky Equation

Expressing Each of the Three Basic Changes in Terms of the Other Two Graphical Illustration Algebraic Formulation and Informal Proof Giffen Goods

VIII. SUPPLY OF LABOR: THE LABOR-LEISURE DECISION

Income-Leisure Space and the Labor-Leisure Decision First Order Conditions for Optimal Supply of Labor Comparative Statics: Income and Substitution Effects Backward Bending Supply of Labor Curves Kinked Budget Lines and the Overtime Decision

IX. SUPPLY OF CAPITAL: THE CONSUMPTION-SAVINGS DECISION

Intertemporal Income and Consumption Streams Interest Rates and Discounted Present Value of a Stream Intertemporal Utility Maximization First Order Conditions and Interpretation Comparative Statics: Income and Substitution Effects

X. DECISION MAKING UNDER RISK AND UNCERTAINTY

a. Outcomes, Lotteries and Expected Value

Choice over Lotteries Expected Value The St. Petersburg Paradox

b. Expected Utility

Two-Stage Lotteries and the Independence Axiom von Neumann-Morgenstern Utility Functions and Expected Utility

c. Risk Aversion

Properties of Risk Averse Preferences Arrow-Pratt Measure of Risk Aversion Risk Aversion and Wealth

- d. Measures of Risk Aversion
- e. Demand for Insurance
- f. Investment in a Risky Asset

FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U(x_1,,x_n)$ utility function	$p_1 \cdot x_1 + \dots + p_n \cdot x_n = I$ budget constraint	$x_1,,x_n$ commodity levels	$p_1,,p_n, I$ prices and income	$x_i(p_1,,p_n,I)$ regular demand functions	$V(p_1,,p_n,I)$ indirect utility function
Expenditure Minimization Problem	$p_1 \cdot x_1 + \dots + p_n \cdot x_n$ expenditure level	$U(x_1,,x_n) = u$ desired utility level	$x_1,,x_n$ commodity levels	$p_1,,p_n, u$ prices and utility level	$h_i(p_1,,p_n,u)$ compensated demand functions	$e(p_1,,p_n,u)$ expenditure function
Labor/Leisure Decision	<i>U</i> (<i>H</i> , <i>I</i>) utility function	$I = I_0 + w \cdot (168 - H)$ budget constraint	<i>H</i> , <i>I</i> leisure time, disposable inc.	<i>w</i> , <i>I</i> ₀ wage rate and nonwage income	$168 - H(w, I_0)$ labor supply function	V(w, I ₀) indirect utility function
Consumption/ Savings Decision	$U(c_1,c_2)$ utility function	$c_2 = I_2 + (1+i) \cdot (I_{1-}c_1)$ budget constraint	c_1, c_2 consumption levels	I_1 , I_2 , i income stream and interest rate	$c_1(I_1, I_2, i), c_2(I_1, I_2, i)$ consumption functions	$V(I_1, I_2, i)$ indirect utility function
Long Run Cost Minimization	$w \cdot L + r \cdot K$ total cost	F(L,K) = Q desired output	<i>L</i> , <i>K</i> factor levels	<i>Q</i> , <i>w</i> , <i>r</i> desired output and factor prices	L(Q,w,r), K(Q,w,r) output-constrained factor demand functions	LTC(Q,w,r) long run total cost function
Long Run Profit Maximization (in terms of Q)	$P \cdot Q - LTC(Q, w, r)$ total profit	none	<i>Q</i> output level	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	<i>Q</i> (<i>P</i> , <i>w</i> , <i>r</i>) long run supply function	$\pi(P,w,r)$ long run profit function
Long Run Profit Maximization (in terms of L and K)	$P \cdot F(L,K) - w \cdot L - r \cdot K$ total profit	none	<i>L</i> , <i>K</i> factor levels	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	L(P,w,r), K(P,w,r) factor demand functions	$\pi(P,w,r)$ long run profit function