Ec 172C - OPERATIONS RESEARCH
Foster, UCSD, Friday, 28 OCT 2005

Name: \qquad
ID: \qquad

MIDTERM EXAM

Open notes; calculator ok. Put answers in space provided. SHOW WORK for partial credit and to avoid allegations of cheating. Carry 3+ decimal places in calculations.

$\operatorname{Pr} 1$		25
$\operatorname{Pr} 2$		25
		$/ 50$

Problem 1

Figure 1 shows a telegraph network c. 1900. Numbers on arcs represent bi-directional flow capacities (word groups/hour). A budding wire service wants to maximize the number of groups that can be sent from Chicago to Omaha. [18,4,3]

Table 1 - Arc Flows	Flow
Minn. To Sioux Falls	-
Chicago to Kansas City Lincoln to Omaha	-

- Find the maximum. Max Flow = \qquad groups/hour
- Draw the minimum cut on the diagram in Figure 1.
- Record arc flows listed in Table 1. Answers must match work shown in worksheet below.

Route	Flow	Total

Problem 2

The Cozumel Relief Authority has 4 work teams which can each be assigned to one of three preparedness activities. Lives saved in the event of storm disruption as a function of teams assigned to activities are in Table 2.
Find (and record in Table 3) an assignment of teams to activities to maximize total potential lives saved. [25]

Table 2	Food/Water Storage	Medical Facilities	Evacuation Vehicles
Teams	200	50	80
1	300	210	120
2	380	360	320
3	410	390	450
4	415	400	475

EVAC.	$\mathrm{V}\left(\mathrm{s}_{3}, \mathrm{~d}_{3}\right)=\mathrm{f}\left(\mathrm{s}_{3}, \mathrm{~d}_{3}\right)+\mathrm{V}^{*}\left(\mathrm{~s}_{4}\right)$						Maximum	
$\left\{\mathrm{s}_{3}\right\} \mathrm{D}\left\{\mathrm{s}_{3}\right\}$	0	1	2	3	4	$\mathrm{~V}^{*}\left(\mathrm{~s}_{3}\right)$	$\mathrm{d}_{3}{ }^{*}$	

MED.	$\mathrm{V}\left(\mathrm{s}_{2}, \mathrm{~d}_{2}\right)=\mathrm{f}\left(\mathrm{s}_{2}, \mathrm{~d}_{2}\right)+\mathrm{V}^{*}\left(\mathrm{~s}_{3}\right)$						Maximum	
$\left\{\mathrm{s}_{2}\right\} \mathrm{D}\left\{\mathrm{s}_{2}\right\}$	0	1	2	3	4	$\mathrm{~V}^{*}\left(\mathrm{~s}_{2}\right)$	$\mathrm{D}_{2}{ }^{*}$	

FOOD	$\mathrm{V}\left(\mathrm{s}_{1}, \mathrm{~d}_{1}\right)=\mathrm{f}\left(\mathrm{s}_{1}, \mathrm{~d}_{1}\right)+\mathrm{V}^{*}\left(\mathrm{~s}_{2}\right)$					Maximum	
$\left\{\mathrm{s}_{1}\right\} \mathrm{D}\left\{\mathrm{s}_{1}\right\}$	0	1	2	3	4	$\mathrm{~V}^{*}\left(\mathrm{~s}_{1}\right)$	$\mathrm{D}_{1}{ }^{*}$

Table 3 -- Results			
Lives saved $=\ldots$	Food/Water	Med. Fac.	Evac. Veh.
Teams Assigned			

