ECONOMICS 100A: MICROECONOMICS

Fall 2003

Tu, Th 12:30-1:50pm W 7:00-8:20pm

HSS 2250 Center Hall 119

Prof: Mark Machina TA's: Phil Babcock

Maria Damon

Office: Economics Bldg. 217

Economics Bldg. 120

Economics Bldg. 125

Hours: Wed, 10am-2pm Fri, 9-11am Mon, 2-4pm

DATE		Tol	PIC	TEXTBOOK / MATH HANDOU	Т			
Sep. 25	Introduction & Mathematical Review #1 Chs. 1,2/ Sect							
Sep. 30	Mathematical Review #1 (continued) B,							
Oct. 1	Consumer Preferences: Utility Functions and Indifference Curves I 3							
Oct. 2	Consumer Preferences: Utility Functions and Indifference Curves II 3							
Oct. 7	Mathematical Review #2							
Oct. 8	Mathematical Review #2 (continued)							
Oct. 9	Utility Maximization and Demand Functions I							
Oct. 14	Utility Maximization and Demand Functions II							
Oct. 15	Comparative Statics of Demand I							
Oct. 16	Comparative S	Comparative Statics of Demand II						
Oct. 21	(Tuesday) 1st	t Midterm Exam Ma	ndeville Au	ditorium 12:30-1:50pm				
Oct. 22	Comparative S	tatics of Demand III			7			
Oct. 23	Supply of Facto	ors of Production I		2:	2			
Oct. 28	Supply of Factors of Production II 23							
Oct. 29	Theory of Prod	uction I		1	1			
Oct. 30	Theory of Prod	uction II		1	1			
Nov. 4	Theory of Cost I 1							
Nov. 5	Theory of Cost II							
Nov. 6	Theory of Cost III							
Nov.12	Mathematical Review #3							
Nov.13	Profit Maximization and Supply Under Perfect Competition I							
Nov.18	Profit Maximization and Supply Under Perfect Competition II 13							
Nov.19	Profit Maximization and Supply Under Perfect Competition III 13							
Nov.20	(Thursday) 2	nd Midterm Exam N	Iandeville A	uditorium 12:30-1:50pm				
Nov.25	Equilibrium an	d Dynamics of Perfectly	y Competitiv	e Markets I 14	4			
Nov.26	Equilibrium and Dynamics of Perfectly Competitive Markets II							
Dec. 2	Equilibrium and Dynamics of Perfectly Competitive Markets III 15							
Dec. 3	Demand for Factors of Production I 21							
Dec. 4	Demand for Factors of Production II 21							
Dec. 11	(Thursday) F	INAL EXAM 11:30a	m-2:30pm	(location to be announced)				

TEXT & READINGS: *Microeconomic Theory: Basic Principles & Extensions,* 8th ed., Walter Nicholson, Southwestern Thomson Learning, 2003. You are responsible for all the material in the assigned chapters. There is also a Soft Reserve package, with a Mathematical Handout that contains required material for the course.

EXAMS: Grades are determined on the basis of two Midterm Exams and a Final Exam.

PRACTICE PROBLEMS: A large set of old exam problems is included in the Soft Reserve package. You are urged to practice on them, in preparation for the actual exams.

Web Page (including e-mail links): http://weber.ucsd.edu/~mmachina/courses/100A/100A.html

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U(x_1,,x_n)$ utility function	$p_1 \cdot x_1 + \dots + p_n \cdot x_n = I$ budget constraint	x ₁ ,,x _n commodity levels	$p_1,,p_n, I$ prices and income	$x_i(p_1,,p_n,I)$ regular demand functions	$V(p_1,,p_n,I)$ indirect utility function
Expenditure Minimization Problem	$p_1 \cdot x_1 + \dots + p_n \cdot x_n$ expenditure level (J.'s 'allowance')	$U(x_1,,x_n) = u_0$ desired utility level	x ₁ ,,x _n commodity levels	$p_1,,p_n, u_0$ prices and utility level	$h_i(p_1,,p_n,\overline{u})$ compensated demand functions	$e(p_1,,p_n,u_0)$ expenditure function
Labor/Leisure Decision	<i>U</i> (<i>H</i> , <i>I</i>) utility function	$I = I_0 + w \cdot (168 - H)$ budget constraint	<i>H</i> , <i>I</i> leisure time, disposable inc.	w, I_0 wage rate and nonwage income	$168 - H(w,I_0)$ labor supply function	$V(w,I_0)$ indirect utility function
Consumption/ Savings Decision	$U(c_1,c_2)$ utility function	$c_2 = I_2 + (1+i) \cdot (I_1 - c_1)$ budget constraint	c ₁ , c ₂ consumption levels	I_1, I_2, i income stream and interest rate	$c_1(I_1, I_2, i), c_2(I_1, I_2, i)$ consumption functions	$V(I_1, I_2, i)$ indirect utility function
Long Run Cost Minimization	$w \cdot L + r \cdot K$ total cost	F(L,K) = Q desired output	L, K factor levels	<i>Q</i> , <i>w</i> , <i>r</i> desired output and factor prices	L(Q,w,r), K(Q,w,r) output-constrained factor demand functions	<i>LTC</i> (<i>Q</i> , <i>w</i> , <i>r</i>) long run total cost function
Long Run Profit Maximization (in terms of Q)	$P \cdot Q - LTC(Q, w, r)$ total profit	none	Q output level	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	<i>Q</i> (<i>P</i> , <i>w</i> , <i>r</i>) long run supply function	$\pi(P,w,r)$ long run profit function
Long Run Profit Maximization (in terms of L and K)	$P \cdot F(L,K) - w \cdot L - r \cdot K$ total profit	none	L, K factor levels	<i>P</i> , <i>w</i> , <i>r</i> output price and factor prices	L(P,w,r), K(P,w,r) factor demand functions	$\pi(P,w,r)$ long run profit function

ECON 100A FAMOUS OPTIMIZATION PROBLEMS