ECON 200A (first half) MICROECONOMICS: DECISIONS

Fall 2014 Monday, Wednesday 11:00am-12:20pm Econ Bldg 200

Mark Machina Econ Bldg 217 Office Hours: Mon 1:00-4:00pm

TA: John Rehbeck Sequoyah Hall 207 Tue & Thu 10:00-11:00am

The texts for the 200A/B/C sequence are:

There will also be a Mathematical Handout and additional in-class handouts.

An extremely useful book of problems, designed to hone your analytical ability is:

Other useful readings include the relevant chapters of:

The exam for this half of 200A will be Wednesday November 5. The exam for the second half will be given at the end of the quarter, and each exam will have equal weight.

I. Introduction and Basic Mathematical Ideas
 a. Some Introductory Ideas
 Domain of Microeconomic Analysis
 Role of Models in Economics
 The Circular Flow Diagram
 Stocks versus Flows and the Dimensions of Economic Variables
 b. Elasticity
 c. Level Curves of Functions
 Formula for the Slope of a Level Curve
 Gradient Vectors and their Relation to Level Curves
 d. Possible Properties of Functions
 Cardinal vs. Ordinal Properties of Functions
 Scale Invariance and Constant Returns to Scale
 Homogeneity and Euler’s Theorem
 Homotheticity
 Concavity and Convexity
 Quasiconcavity and Quasiconvexity
 Additive and Multiplicative Separability
 e. Systems of Linear Equations and Cramer’s Rule

II. Mathematics of Optimization
 a. The General Structure of Optimization Problems
 Objective Functions, Control Variables, Parameters, Constraints
 Solution Functions and Optimal Value Functions
 b. Unconstrained Optimization
 First Order Conditions
 Second Order Conditions
 c. Constrained Optimization
 First Order Conditions
 Lagrangians
 Corner Solutions
 Shadow Prices of Constraints
 Second Order Conditions
 d. Comparative Statics of Solution Functions – Implicit Differentiation
 Differentiation of the First Order Conditions
 A Related Application: Comparative Statics of Equilibria
 e. Comparative Statics of Optimal Value Functions – The Envelope Theorem
 Unconstrained Case: Differentiation of the Objective Function
 Constrained Case: Differentiation of the Lagrangian
III. CONSUMER PREFERENCES AND THE UTILITY FUNCTION

a. The Choice Space
 The Objects of Choice
 The Relevant Time Period
 The Issue of Divisibility

b. Preference Relations
 Definitions and General Properties of Preference Relations
 Defined over Commodity Bundles, not Individual Commodities
 Weak Preference, Strict Preference and Indifference
 Completeness, Reflexivity and Transitivity
 Possible Additional Properties of Preference Relations
 Continuity
 Weak Monotonicity/Strong Monotonicity/Local Nonsatiation
 Weak Convexity/Strong Convexity
 Equivalent Variation versus Compensation Variation
 The Theory of Revealed Preference
 Representation of a Choice Function by a Preference Relation
 Revealed Preference over Budget Sets

c. Indifference Curves and the Marginal Rate of Substitution
 Better-Than Sets, Worse-Than Sets and Indifference Sets
 Typical Properties of Indifference Curves
 One Through Each Point
 Downward Sloping and “Thin”
 Can’t Cross
 Marginal Rate of Substitution (MRS)
 Definition of MRS
 Graphical Interpretation: Slope of the Indifference Curve
 Convexity of Preferences and the Hypothesis of Diminishing MRS

d. Utility Functions
 Representation of a Preference Ranking by a Utility Function
 Monotonic Invariance of Utility Functions
 Possible Properties of a Utility Function:
 Weak/Strong Monotonicity
 Weak/Strong Quasiconcavity
 Homotheticity
 Additive/Multiplicative Separability
 Expressing the MRS in Terms of Marginal Utilities
 Monotonic Invariance of the MRS
 Hypothesis of Diminishing MRS
 Algebraic Condition for Hypothesis of Diminishing MRS
 Important Examples of Utility Functions
 Linear
 Cobb-Douglas
 Leontief
 Constant Elasticity of Substitution (CES)
 Quasilinear
IV. UTILITY MAXIMIZATION AND DEMAND FUNCTIONS

a. Utility Maximization Subject to a Budget Constraint
 - Graphical Illustration
 - First Order Conditions for Utility Maximization
 - Two Interpretations of the First Order Conditions
 - Monotonic Invariance of the First Order Conditions
 - Corner Solutions
 - Economic Interpretation of the Lagrangian Multiplier
 - Second Order Conditions (Hypothesis of Diminishing MRS)
 - Algebraic Examples: Cobb-Douglas, Leontief, Linear

b. Regular (“Marshallian”) Demand Functions
 - Definition of Regular Demand Functions
 - Examples: Cobb-Douglas, Leontief, Linear
 - General Properties of Demand Functions:
 - Walras’ Law
 - Scale Invariant in Prices and Income
 - Relationship between Price Elasticities & Income Elasticity for a Good
 - Market Demand Functions

c. The Indirect Utility Function
 - Properties:
 - Increasing in Income, Nonincreasing in Prices
 - Scale Invariant in Prices and Income
 - Quasiconvex in Prices and Income
 - Roy’s Identity
 - Price Indifference Curves
 - Effect of Monotonic Transformation of Utility
 - Examples: Cobb-Douglas, Leontief, Linear
 - Justification of the Two-Good Approach: The Composite Commodity Theorem

d. Compensated (“Hicksian”) Demand Functions and the Expenditure Function
 - The Expenditure Minimization Problem
 - First Order Conditions for Expenditure Minimization
 - Compensated (“Hicksian”) Demand Functions
 - Properties:
 - Scale Invariant in Prices
 - Nonincreasing in “Own Price”
 - Identities Linking the Marshallian and Hicksian Demand Functions
 - Examples: Cobb-Douglas, Leontief, Linear
 - The Expenditure Function
 - Properties:
 - Increasing in Utility, Nondecreasing in Prices
 - Homogeneous of Degree One in Prices
 - Concave in Prices
 - Identities Linking the Expenditure and Indirect Utility Functions
 - Consumer Surplus
V. COMPARATIVE STATICS OF DEMAND

a. Changes in Income
 Income-Consumption Loci
 Engel Curves: Definition and Graphical Derivation
 Income Elasticity
 Superior, Normal and Inferior Goods
 Income Elasticity and Budget Shares
 Relationship Between Income Elasticities of All Goods
 Algebraic Derivation of the Effect of an Income Change
 Relationship Between Income Elasticities for All Goods

b. Changes in Prices
 Price-Consumption Loci
 Graphical Derivation of Marshallian Demand Curves
 Own Price Elasticity
 Price Elasticity and Budget Shares
 Cross Price Elasticity
 Gross Substitutes and Gross Complements
 Algebraic Derivation of the Effect of a Price Change
 Relationship Between All Price and Income Elasticities for a Good

c. Compensated Price Changes
 Graphical Illustration of a Compensated Price Change
 Algebraic Derivation of the Effect of a Compensated Price Change
 Nonpositivity of Own Compensated Price Effect
 Compensated Cross Price Elasticity
 Net Substitutes and Net Complements

d. The Slutsky Equation
 Graphical Illustration of the Slutsky Decomposition
 Algebraic Statement and Proofs
 Giffen Goods

VI. SUPPLY OF FACTORS OF PRODUCTION

a. Supply of Labor: The Labor-Leisure Decision
 Income-Leisure Space and the Labor-Leisure Decision
 First Order Conditions for Optimal Supply of Labor
 Comparative Statics: Income and Substitution Effects
 Backward Bending Supply of Labor Curves
 Kinked Budget Lines and the Overtime Decision

b. Supply of Capital: The Consumption-Savings Decision
 Intertemporal Income and Consumption Streams
 Interest Rates and the Discounted Present Value of a Stream
 Relationship between the Rental Rate and the Price of Capital
 Intertemporal Utility Maximization
 First Order Conditions and Interpretation
 Comparative Statics: Income and Substitution Effects
VII. CHOICE UNDER UNCERTAINTY

a. Objective Uncertainty
 Objects of Choice and Preference Functionals
 Structure of Expected Utility Preferences
 Axiomatic Characterization of Expected Utility
 Arrow-Pratt Characterization of Comparative Risk Aversion
 Risk Aversion and Wealth
 Rothschild-Stiglitz Characterization of Comparative Risk
 Demand for Insurance

b. Subjective Uncertainty
 States, Events, Outcomes and Acts
 Probabilistic Sophistication
 Expected Utility Preferences over Subjective Acts
 State-Dependent Utility

c. Evidence and Alternative Models
 Evidence on the Independence Axiom
 Non-Expected Utility Preference Functionals
 Generalized Expected Utility Analysis
 Evidence on Probabilistic Sophistication and the Stability of Preferences

VIII. SPECIFICATION AND ESTIMATION OF DEMAND, COST AND SUPPLY

a. Parametric Estimation of Demand Systems
b. Parametric Estimation of Production and Cost Systems
c. Nonparametric Testing of the Maximization Hypothesis
ECONOMICS 200A (first half): READINGS BY TOPIC

Fall 2014

Mark Machina

I. Introduction and Basic Mathematical Ideas
 Required: Math Handout, Sections A through F; Kreps Ch.1
 Also suggested: MWG App.A-E; Varian Ch.26

II. Mathematics of Optimization
 Required: Mathematical Handout, Sections G through I
 Also suggested: Kreps App.1; MWG App. J-L; Varian Ch.27

III. Consumer Preferences and the Utility Function
 Required: Kreps Sect.2.1; MWG Ch.1, Sects.2A-2C,3A-3C; Varian Sect. 7.1
 Also suggested: Suggested readings will be provided in an in-class handout

IV. Utility Maximization and Demand Functions
 Required: Kreps Ch.2; MWG Sects.2D,3D; Varian Sects.7.2-7.5
 Also suggested: Henderson & Quandt, Sects.2.1-2.3

V. Comparative Statics of Demand
 Required: MWG Sects.2E-2F, 3E-3J; Varian Chs. 8, 9
 Also suggested: MWG Ch.4; Varian Ch.10, Henderson & Quandt, Sects.2.5-2.7

VI. Supply of Factors of Production
 Required: MWG Sects.20A-20D; Varian Ch.19
 Also suggested: Kreps Ch.4, Sect.6.5; MWG Sects.19A-19B

VII. Choice Under Uncertainty
 Required: Kreps Ch.3; MWG Ch.6; Varian Ch.11;

VIII. Specification and Estimation of Demand, Cost and Supply
 Required: Varian Ch.12
 Required: Ch. 3 of Deaton & Muellbauer (1980), Economics and Consumer Behavior.
FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

<table>
<thead>
<tr>
<th>Optimization Problem</th>
<th>Objective Function</th>
<th>Constraint</th>
<th>Control Variables</th>
<th>Parameters</th>
<th>Solution Functions</th>
<th>Optimal Value Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer’s Problem</td>
<td>$U(x_1,\ldots,x_n)$ utility function</td>
<td>$p_1 x_1 + \ldots + p_n x_n = I$ budget constraint</td>
<td>x_1,\ldots,x_n commodity levels</td>
<td>p_1,\ldots,p_n, I prices and income</td>
<td>$x_i(p_1,\ldots,p_n, I)$ regular demand functions</td>
<td>$V(p_1,\ldots,p_n, I)$ indirect utility function</td>
</tr>
<tr>
<td>Expenditure Minimization Problem</td>
<td>$p_1 x_1 + \ldots + p_n x_n$ expenditure level</td>
<td>$U(x_1,\ldots,x_n) = u$ desired utility level</td>
<td>x_1,\ldots,x_n commodity levels</td>
<td>p_1,\ldots,p_n, u prices and utility level</td>
<td>$h_i(p_1,\ldots,p_n, u)$ compensated demand functions</td>
<td>$e(p_1,\ldots,p_n, u)$ expenditure function</td>
</tr>
<tr>
<td>Labor/Lesuire Decision</td>
<td>$U(H,I)$ utility function</td>
<td>$I = I_0 + w(168 - H)$ budget constraint</td>
<td>H, I leisure time, disposable inc.</td>
<td>w, I_0 wage rate and nonwage income</td>
<td>$L(w,I_0) = 168 - H(w,I_0)$ labor supply function</td>
<td>$V(w,I_0)$ indirect utility function</td>
</tr>
<tr>
<td>Intertemporal Optimization</td>
<td>$U(c_1,\ldots,c_n)$ utility function</td>
<td>$\sum_{i=1}^n (1+i)^t (I_i - c_i) = 0$ budget constraint</td>
<td>c_1,\ldots,c_n consumption levels</td>
<td>I_1,\ldots,I_n, i income stream and interest rate</td>
<td>$c_i(I_1,\ldots,I_n, i)$ indirect utility function</td>
<td>$V(I_1,\ldots,I_n, i)$ indirect utility function</td>
</tr>
<tr>
<td>Long Run Cost Minimization</td>
<td>$wL + rK$ total cost</td>
<td>$F(L,K) = Q$ desired output</td>
<td>L, K factor levels</td>
<td>Q, w, r desired output and factor prices</td>
<td>$L(Q,w,r), K(Q,w,r)$ output-constrained factor demands</td>
<td>$\text{LTC}(Q,w,r)$ long run total cost function</td>
</tr>
<tr>
<td>Long Run Profit Maximization (in terms of Q)</td>
<td>$PQ - \text{LTC}(Q,w,r)$ total profit</td>
<td>Q output level</td>
<td>P, w, r output price and factor prices</td>
<td>$Q(P,w,r)$ long run supply function</td>
<td>$\pi(P,w,r)$ long run profit function</td>
<td>$\pi(P,w,r)$ long run profit function</td>
</tr>
<tr>
<td>Long Run Profit Maximization (in terms of L,K)</td>
<td>$P\cdot F(L,K) - wL - rK$ total profit</td>
<td>L, K factor levels</td>
<td>P, w, r output price and factor prices</td>
<td>$L(P,w,r), K(P,w,r)$ factor demand functions</td>
<td>$\pi(P,w,r)$ long run profit function</td>
<td>$\pi(P,w,r)$ long run profit function</td>
</tr>
<tr>
<td>Long Run Profit Maximization (in terms of Q,L,K)</td>
<td>$PQ - wL - rK$ total profit</td>
<td>$F(L,K) = Q$ production function</td>
<td>Q, L, K output and factor levels</td>
<td>P, w, r output price and factor prices</td>
<td>$Q(P,w,r), L(P,w,r), K(P,w,r)$ output supply & factor demand functions</td>
<td>$\pi(P,w,r)$ long run profit function</td>
</tr>
</tbody>
</table>