ECON 200A: MICROECONOMICS ("DECISIONS")

Prof. Mark Machina Office: Econ Bldg. 217 Office Hours: Wed. 8am-noon
TA: Aislinn Bohren Econ Bldg. 127 Thurs. 3:30-5:30

The topics of this course are the economic theories of consumer and producer behavior.

The texts for the 200A/B/C sequence are:

There is also a Mathematical Handout for this course, and additional in-class handouts.

An extremely useful book of problems, designed to hone your analytical ability is:

Other useful readings include the relevant chapters of:

EXAMS: Your grade in the course will be determined on the basis of in-class two midterms (Tuesday, Oct. 21 and Thursday, Nov. 20) and a final exam (Tuesday, Dec. 9, 8:00-11:00am).

PRACTICE QUESTIONS: For those who would like prior practice working with the material at a more basic level, or whose microeconomics background is not strong, there is a package of approximately ∞ practice questions available. These questions sometime accidentally find their way onto Econ 200A midterms and final exams. Even onto Micro Qualifiers ...

I. INTRODUCTION AND BASIC MATHEMATICAL IDEAS
 a. Some Introductory Ideas
 Domain of Microeconomic Analysis
 Role of Models in Economics
 The Circular Flow Diagram
 Stocks versus Flows and the Dimensions of Economic Variables
 b. Elasticity
 c. Level Curves of Functions
 d. Possible Properties of Functions
 Cardinal vs. Ordinal Properties of Functions
 Scale Invariance and Constant Returns to Scale
 Homogeneous Functions and Euler’s Theorem
 Homotheticity
 Concavity and Convexity
 Quasiconcavity and Quasiconvexity
 Additive and Multiplicative Separability
 e. Systems of Linear Equations and Cramer’s Rule

II. MATHEMATICS OF OPTIMIZATION
 a. The General Structure of Optimization Problems
 Objective Functions, Control Variables, Parameters, Constraints
 Solution Functions and Optimal Value Functions
 b. Unconstrained Optimization
 First Order Conditions
 Second Order Conditions
 c. Constrained Optimization
 First Order Conditions
 Lagrangians
 Corner Solutions
 Second Order Conditions
 d. Comparative Statics of Solution Functions – Implicit Differentiation
 Differentiation of First Order Conditions
 A Related Application: Comparative Statics of Equilibria
 e. Comparative Statics of Optimal Value Functions – The Envelope Theorem
 Unconstrained Case: Differentiation of the Objective Function
 Constrained Case: Differentiation of the Lagrangian
III. CONSUMER PREFERENCES AND THE UTILITY FUNCTION

a. The Choice Space
 The Objects of Choice
 The Relevant Time Period
 The Issue of Divisibility

b. The Consumer’s Preference Ranking
 Weak Preference, Strict Preference and Indifference
 Preferences are Defined over Commodity Bundles, not Individual Commodities
 General Properties of the Preference Ranking:
 Completeness, Reflexivity and Transitivity
 Continuity
 Alternative Definitions of Continuity
 Example of Non-Continuous Preferences: Lexicographic Preferences
 Possible Additional Properties of the Preference Ranking
 Weak Monotonicity/Strong Monotonicity
 Local Nonsatiation
 Weak Convexity/Convexity/Strong Convexity
 Equivalent Variation versus Compensation Variation

c. Indifference Curves and the Marginal Rate of Substitution
 Better-Than Sets, Worse-Than Sets and Indifference Sets
 Typical Properties of Indifference Curves
 One Through Each Point
 Downward Sloping and “Thin”
 Can’t Cross
 Marginal Rate of Substitution (MRS)
 Definition of MRS
 Graphical Interpretation: Slope of the Indifference Curve
 Convexity of Preferences and Hypothesis of Diminishing MRS

d. Utility Functions
 Representation of a Preference Ranking by a Utility Function
 Monotonic Invariance of Utility Functions
 Possible Properties of a Utility Function:
 Weak/Strong Monotonicity
 Weak/Strong Quasiconcavity
 Homotheticity
 Additive/Multiplicative Separability
 Expressing the MRS in Terms of Marginal Utilities
 Monotonic Invariance of the MRS
 Hypothesis of Diminishing MRS
 Algebraic Condition for Hypothesis of Diminishing MRS
 Important Examples of Utility Functions
 Linear
 Cobb-Douglas
 Leontief
 Constant Elasticity of Substitution (CES)
IV. UTILITY MAXIMIZATION AND DEMAND FUNCTIONS

a. Utility Maximization Subject to a Budget Constraint
 - Graphical Illustration
 - First Order Conditions for Utility Maximization
 - Two Interpretations of the First Order Conditions
 - Monotonic Invariance of the First Order Conditions
 - “Marginal Utility of Income”
 - Second Order Conditions (Hypothesis of Diminishing MRS)
 - Algebraic Examples: Cobb-Douglas, Leontief, Linear
 - Corner Solutions

b. Regular or “Marshallian” Demand Functions
 - Definition of Regular Demand Functions
 - Examples: Cobb-Douglas, Leontief, Linear
 - General Properties of Demand Functions:
 - Not Necessarily Nonincreasing in “Own Price”
 - Walras’ Law
 - Scale Invariant in Prices and Income
 - Relationship between Price Elasticities & Income Elasticity for a Good
 - Market Demand Functions

c. The Indirect Utility Function
 - Properties:
 - Increasing in Income, Nonincreasing in Prices
 - Scale Invariant in Prices and Income
 - Quasiconvex in Prices and Income
 - Utility-Income Curves
 - Price Indifference Curves
 - Effect of Monotonic Transformation of Utility
 - Examples: Cobb-Douglas, Leontief, Linear

d. Compensated Demand Functions and the Expenditure Function
 - The Expenditure Minimization Problem
 - First Order Conditions for Expenditure Minimization
 - Compensated or “Hicksian” Demand Functions
 - Properties:
 - Scale Invariant in Prices
 - Nonincreasing in “Own Price”
 - Identities Linking the Marshallian and Hicksian Demand Functions
 - Examples: Cobb-Douglas, Leontief, Linear
 - The Expenditure Function
 - Properties:
 - Increasing in Utility, Nondecreasing in Prices
 - Homogeneous of Degree One in Prices
 - Concave in Prices
 - Identities Linking the Expenditure and Indirect Utility Functions
V. COMPARATIVE STATICS OF DEMAND

a. Changes in Income
 Income-Consumption Loci
 Engel Curves: Definition and Graphical Derivation
 Income Elasticity
 Superior, Normal and Inferior Goods
 Income Elasticity and Budget Shares
 Relationship Between Income Elasticities of All Goods
 Algebraic Derivation of the Effect of an Income Change
 Relationship Between Income Elasticities for All Goods

b. Changes in Prices
 Price-Consumption Loci
 Graphical Derivation of Marshallian Demand Curves
 Own Price Elasticity
 Price Elasticity and Budget Shares
 Cross Price Elasticity
 Gross Substitutes and Gross Complements
 Algebraic Derivation of the Effect of a Price Change
 Relationship Between All Price and Income Elasticities for a Good

c. Compensated Price Changes
 Graphical Illustration of a Compensated Price Change
 Graphical Illustration of a Compensated Demand Curves
 Algebraic Derivation of the Effect of a Compensated Price Change
 Nonpositivity of Own Compensated Price Effect
 Compensated Cross Price Elasticity
 Net Substitutes and Net Complements

d. The Slutsky Equation
 Expressing Each of the Three Basic Changes in Terms of the Other Two
 Graphical Illustration
 Algebraic Formulation
 Giffen Goods

e. Some Important Results
 Economic Interpretation of the Lagrangian Multiplier
 Roy’s Identity (Linking the Indirect Utility and Demand Functions)
 Relationship Between the Expenditure and Compensated Demand Functions
 A One-Line Proof of the Slutsky Equation
 Justification of the Two-Good Approach: The Composite Commodity Theorem
VI. PRODUCTION, COST AND DUALITY

a. Factors of Production
 The Stock-Flow Distinction
 Types of Factors and Their Income

b. Production Functions and Production Sets
 Definition and Important Examples of Production Functions
 Marginal Products and the Law of Diminishing Marginal Returns
 Average Products and the Average-Marginal Relationship
 Returns to Scale
 Technical Progress
 Three Implications of Technical Progress
 Hicks-Neutral, Harrod-Neutral and Solow-Neutral Technical Progress
 Continuous Technical Progress
 Production Sets and Input Requirement Sets

c. Isoquants and the Marginal Rate of Technical Substitution (MRTS)
 Definition and General Properties of Isoquants
 Definition of MRTS
 Expressing MRTS in Terms of Marginal Products
 Hypothesis of Diminishing MRTS
 Elasticity of Substitution

d. The Nature of Cost
 Definition of Cost
 Accounting Cost vs. Opportunity Cost of Owned Factors
 Cost of Entrepreneurial Ability and Definition of “Normal Profits”
 Short Run versus Long Run Planning Horizons

e. Long Run Minimization and Long Run Cost Functions
 Isocost Lines
 Long Run Cost Minimization
 First Order Conditions and Output-Constrained Factor Demands
 Two Interpretations of the First Order Conditions
 Second Order Conditions and the Hypothesis of Diminishing MRTS
 Equivalence to Constrained Output Maximization
 The Long Run Expansion Path
 Long Run Total Cost Function (LTC)
 Properties of LTC:
 Increasing in Output, Nondecreasing in Factor Prices
 Homogeneous of Degree One in Factor Prices
 Concave in Factor Prices
 Deriving Output-Constrained Factor Demands from LTC
 Long Run Marginal Cost Function (LMC)
 Relation of LMC to Marginal Products and Factor Prices
 Long Run Average Cost Function (LAC)
 Returns to Scale and Long Run Average Cost
 Average-Marginal Relationship
 Relation Between Long Run and Short Run Total, Average and Marginal Cost Curves
f. Short Run Cost Functions
 Expansion Path in the Short Run
 Graphical Derivation of the Short Run Total Cost Curve
 Algebraic Derivation of Short Run Total Cost Function (STC)
 Examples: Linear, Leontief, Cobb-Douglas
 Short Run Variable Cost Function (SVC)
 Short Run Fixed Cost Function (SFC)
 Short Run Marginal Cost Function (SMC)
 Relation of SMC to Marginal Product of Labor and Wage Rate
 Short Run Average Total Cost Function (SATC)
 Short Run Average Variable Cost Function (SAVC)
 Short Run Average Fixed Cost Function (SAFC)
 Average-Marginal Relationships
 Effects and Interpretation of “Changes in Fixed Capital \bar{K}”

g. Duality Between Production and Cost
 Equivalence of Cost Minimization and Constrained Output Maximization
 Convexification of Input Requirement Sets and Competitive Production
 Recovery of Production Function and Cost Functions from Each Other
 Characterization of Cost Functions:
 Positive
 Nondecreasing in Output and Factor Prices
 Homogeneous Degree One in Factor Prices
 Concave in Factor Prices
 Relationship Between Isocost Curves (in the Factor Price Plane) and Isoquants

VII. PROFIT MAXIMIZATION AND SUPPLY
a. Long Run Profit Maximization and Supply
 Long Run Profit Maximization (Graphical Illustration and Algebraic Formulation)
 First Order Conditions and Interpretation
 Second Order Condition (Increasing Marginal Cost)
 The Long Run Supply Function of the Firm
 Properties:
 Increasing in Price, Nonincreasing in Factor Prices
 Scale Invariant in Output and Factor Prices
 Long Run Elasticity of Supply
 Cobb-Douglas Example
 The Long Run Profit Function
 Properties:
 Increasing in Price, Nonincreasing in Factor Prices
 Homogeneous of Degree One in All (Output and Factor) Prices
 Convex in Output and Factor Prices
 Cobb-Douglas Example
 Identity Linking the Long Run Profit and Supply Functions
b. **Short Run Profit Maximization and Supply**

The Three Relevant Regions and the Shut Down Decision
Illustration in Terms of STC and SVC Curves
Illustration in Terms of SATC and SAVC Curves
The Short Run Supply Curve of the Firm
The Short Run Supply Function of the Firm
Properties:
- Increasing in p, Nonincreasing in (w,r)
- Scale Invariant in (p,w)
- Effects of Changes in \bar{K}
Short Run Elasticity of Supply
Cobb-Douglas Example
The Short Run Profit Function
Properties
- Increasing in p, Nonincreasing in (w,r)
- Homogeneous Degree One in (p,w,r)
- Convex in (p,w,r)
- Effects of Changes in \bar{K}
Cobb-Douglas Example
Identity Linking the Short Run Profit and Supply Functions
Comparison of Short Run and Long Run Profit Functions
Comparison of Short Run and Long Run Supply Elasticities

c. **Factor Demand Functions**

Maximizing Profits by Choosing Optimal Input Levels
Marginal Value Product of a Factor of Production
Short Run Factor Demand
First Order Condition for Short Run Profit Maximization
Short Run Factor Demand Functions
- Nonincreasing in Own Factor Price
- Scale Invariant in Output Price and Prices of Variable Factors
Relation to Short Run Supply Function
Long Run Factor Demand
First Order Conditions for Long Run Profit Maximization
Long Run Factor Demand Functions
- Nonincreasing in Own Factor Price
- Scale Invariant in Output Price and Factor Prices
Relation to Long Run Supply Function
Relation to the Profit Function
Properties:
- Nonincreasing in Own Price
- Scale Invariant in (p,w,r)
- Symmetric Cross Factor Price Effects
VIII. CHOICE UNDER UNCERTAINTY

a. Objective Uncertainty
 - Objects of Choice and Preference Functionals
 - Structure of Expected Utility Preferences
 - Axiomatic Characterization of Expected Utility
 - Arrow-Pratt Characterization of Comparative Risk Aversion
 - Risk Aversion and Wealth
 - Rothschild-Stiglitz Characterization of Comparative Risk
 - Demand for Insurance

b. Subjective Uncertainty
 - States, Events, Outcomes and Acts
 - Probabilistic Sophistication
 - Expected Utility Preferences over Subjective Acts
 - State-Dependent Utility

c. Evidence and Alternative Models
 - Evidence on the Independence Axiom
 - Non-Expected Utility Preference Functionals
 - Generalized Expected Utility Analysis
 - Evidence on Probabilistic Sophistication and the Stability of Preferences

IX. INTERTEMPORAL CHOICE & PRODUCTION: SUPPLY AND DEMAND FOR CAPITAL

a. Supply of Labor: The Labor-Leisure Decision
 - Income-Leisure Space and the Labor-Leisure Decision
 - First Order Conditions for Optimal Supply of Labor
 - Comparative Statics: Income and Substitution Effects
 - Backward Bending Supply of Labor Curves
 - Kinked Budget Lines and the Overtime Decision

b. Supply of Capital: The Consumption-Savings Decision
 - Intertemporal Income and Consumption Streams
 - Interest Rates and Discounted Present Value of a Stream
 - Intertemporal Utility Maximization
 - First Order Conditions and Interpretation
 - Comparative Statics: Income and Substitution Effects

c. Intertemporal Production: The Demand for Capital
 - Two-Period Illustration
 - Finite-Period Production and Investment
 - Continuous Time Production: When to Cut a Tree

d. Relationship between Rental Market and Sales Market for Capital

X. SPECIFICATION AND ESTIMATION OF DEMAND, COST AND SUPPLY

a. Parametric Estimation of Demand Systems

b. Parametric Estimation of Production and Cost Systems

c. Nonparametric Testing of the Maximization Hypothesis
I. Introduction and Basic Mathematical Ideas
 Required: Math Handout, Sections A through F; Kreps Ch.1
 Also suggested: MWG App.A-E; Varian Ch.26

II. Mathematics of Optimization
 Required: Mathematical Handout, Sections G through I
 Also suggested: Kreps App.1; MWG App. J-L; Varian Ch.27

III. Consumer Preferences and the Utility Function
 Required: Kreps Sect.2.1; MWG Ch.1, Sects.2A -2C,3A - 3C; Varian Sect. 7.1
 Also suggested: Suggested readings will be provided in an in-class handout

IV. Utility Maximization and Demand Functions
 Required: Kreps Ch.2; MWG Sects.2D,3D; Varian Sects.7.2-7.5
 Also suggested: Henderson & Quandt, Sects.2.1-2.3

V. Comparative Statics of Demand
 Required: MWG Sects.2E-2F, 3E-3J; Varian Chs. 8, 9
 Also suggested: MWG Ch.4; Varian Ch.10, Henderson & Quandt, Sects.2.5-2.7

VI. Production, Cost and Duality
 Required: Kreps Sect. 7.1 ; MWG Ch.5; Varian Chs.1,4,5,6
 Also suggested: Henderson & Quandt, Chs.4,5

VII. Profit Maximization and Supply
 Required: Kreps Ch.7; MWG Ch.5; Varian Chs.2,3
 Also suggested: Kreps Chs.19,20

VIII. Choice Under Uncertainty
 Required: Kreps Ch.3; MWG Ch.6; Varian Ch.11;

IX. Intertemporal Choice and Production
 Required: MWG Sects.20A-20D; Varian Ch.19
 Also suggested: Kreps Ch.4, Sect.6.5; MWG Sects.19A-19B

X. Specification and Estimation of Demand, Cost and Supply
 Required: Varian Ch.12
 Required: Ch. 3 of Deaton & Muellbauer (1980), Economics and Consumer Behavior.
ECON 200A: FAMOUS OPTIMIZATION PROBLEMS

<table>
<thead>
<tr>
<th>Optimization Problem</th>
<th>Objective Function</th>
<th>Constraint</th>
<th>Control Variables</th>
<th>Parameters</th>
<th>Solution Functions</th>
<th>Optimal Value Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer’s Problem</td>
<td>$U(x_1,\ldots,x_n)$ utility function</td>
<td>$p_1x_1+\ldots+p_nx_n = I$ budget constraint</td>
<td>x_1,\ldots,x_n commodity levels</td>
<td>p_1,\ldots,p_n,I prices and income</td>
<td>$V(p_1,\ldots,p_n,l)$ indirect utility function</td>
<td></td>
</tr>
<tr>
<td>Expenditure Minimization Problem</td>
<td>$p_1x_1+\ldots+p_nx_n$ expenditure level</td>
<td>$U(x_1,\ldots,x_n) = u$ desired utility level</td>
<td>x_1,\ldots,x_n commodity levels</td>
<td>p_1,\ldots,p_n,u prices and utility level</td>
<td>$h_k(p_1,\ldots,p_n,u)$ compensated demand functions</td>
<td>$e(p_1,\ldots,p_n,u)$ expenditure function</td>
</tr>
<tr>
<td>Labor/Leisure Decision</td>
<td>$U(H,I)$ utility function</td>
<td>$I = I_0 + w(168 - H)$ budget constraint</td>
<td>H, I leisure time, disposable inc.</td>
<td>w, I_0 wage rate and nonwage income</td>
<td>$L(w,I_0) = 168 - H(w,I_0)$ labor supply function</td>
<td>$V(w,I_0)$ indirect utility function</td>
</tr>
<tr>
<td>Intertemporal Optimization</td>
<td>$U(c_1,\ldots,c_n)$ utility function</td>
<td>$\sum_{i-1}^n(1+i)^t(I_t-c_t) = 0$ budget constraint</td>
<td>c_1,\ldots,c_n consumption levels</td>
<td>I_1,\ldots,I_n, i income stream and interest rate</td>
<td>$c(I_1,\ldots,I_n, i)$ consumption functions</td>
<td>$V(I_1,\ldots,I_n, i)$ indirect utility function</td>
</tr>
<tr>
<td>Long Run Cost Minimization</td>
<td>$wL + rK$ total cost</td>
<td>$F(L,K) = Q$ desired output</td>
<td>L, K factor levels</td>
<td>Q, w, r desired output and factor prices</td>
<td>$L(Q, w, r), K(Q, w, r)$ output-constrained factor demands</td>
<td>$LTC(Q, w, r)$ long run total cost function</td>
</tr>
<tr>
<td>Long Run Profit Maximization (in terms of Q)</td>
<td>$PQ - LTC(Q, w, r)$ total profit</td>
<td>none</td>
<td>Q output level</td>
<td>P, w, r output price and factor prices</td>
<td>$Q(P, w, r)$ long run supply function</td>
<td>$\pi(P, w, r)$ long run profit function</td>
</tr>
<tr>
<td>Long Run Profit Maximization (in terms of L, K)</td>
<td>$PFL(L, K) - wL - rK$ total profit</td>
<td>none</td>
<td>L, K factor levels</td>
<td>P, w, r output price and factor prices</td>
<td>$L(P, w, r), K(P, w, r)$ factor demand functions</td>
<td>$\pi(P, w, r)$ long run profit function</td>
</tr>
<tr>
<td>Long Run Profit Maximization (in terms of Q, L, K)</td>
<td>$PQ - wL - rK$ total profit</td>
<td>$F(L,K) = Q$ production function</td>
<td>Q, L, K output and factor levels</td>
<td>P, w, r output price and factor prices</td>
<td>$Q(P, w, r), L(P, w, r), K(P, w, r)$ output supply & factor demand functions</td>
<td>$\pi(P, w, r)$ long run profit function</td>
</tr>
</tbody>
</table>