Lecture 1 Course overview and intro to enzymes

Web page http://courses.ucsd.edu/rhampton/bibc102
Ideas in metabolism
 non-iterated structures but common structural themes
 metabolic pathway
Why study metabolism
 relevant to all life
 numerous diseases and conditions
 catabolism and anabolism
 we think on many levels
 from atomic to ecological
Proteins
 amino acids
 peptide bond
 4 levels of structure
 alpha helix, beta sheet
Cofactors
 heme, ions, vitamins, etc.
Enzymes: the key to metabolism
 features and action
Rate enhancement
 typical numbers
 description on energy diagram (lowering DG‡)
Stabilizing transition state
Four modes of catalysis
 entropy reduction, acid-base, metal ion, covalent intermediate

Lecture 2 Enzyme kinetics and regulation

Activation energy and the reaction coordinate
 ΔG‡: the free energy of activation
 effect of enzyme on ΔG‡
Computing the effect of changing ΔG‡ on a reaction rate
 $e^{-\frac{\Delta G}{RT}}$ as a multiplicative factor
Ligand binding: features and the Kd
Relation of binding isotherms to Kd and Bmax
Viewing enzyme action as a process started by binding
Michaelis-Menton equation and isotherm
Relationship between Kcat and Vmax
Lineweaver-Burk yo! Flippin' M & M…
 use in visualizing data for mechanism and inhibition
Enzyme inhibitors
 competitive
uncompetitive
suicide
Chymotrypsin mechanism
Induced fit
xylose vs. glucose and ATP hydrolysis
Covalent modification of enzymes
phosphorylation and dephosphorylation
kinases and phosphatases
example: glycogen phosphorlase
other modifications: adenylylation, uridylylation, methylation
ADP ribosylation

Lecture 3 More enzymes and bioenergetics

Cooperative vs. simple binding: hemoglobin vs. myoglobin
Cooperative enzyme an analogous curve
structural ideas
features of a cooperative enzyme
heterotypic vs. homotypic regulator
Positive and negative allosteric regulators
Example: aspartate transcarbamoylase
Example: chorismate mutase: an allosteric dimer
Metabolism overview: anabolism and catabolism
convergence of all anabolism and catabolism to a few molecules
ATP, NADH, NADPH, FADH2
converging catabolism diverging anabolism
recurring patterns
Def of DG: equation with H and S
structural ideas
Cooperative vs. simple binding: hemoglobin vs. myoglobin
Cooperative enzyme an analogous curve
structural ideas

Lecture 4 Bioenergetics

ΔG: a combination of enthalpy and entropy
some aspects of entropy
ΔG° : relation to K'eq
equation relating actual ΔG to ΔG°
concentration ration determines true ΔG
ATP : the 20 dollar bill of the cell
hydrolysis of ATP
a variety of phosphorylated compounds
free energy is additive
general meaning
Example of spontaneity due to sequence of reactions
 polynucleotide synthesis and pyrophosphate hydrolysis
General idea of coupling reactions
 To lift a big weight, you need to drop a larger weight
 "Big Bear/Little Bear
Example of coupling two reactions by forming a covalent intermediate
 formation of glutamine by addition of P to glutamate
Other types of ATP hydrolysis
Examples of coupling two reactions by forming a covalent intermediate
 formation of palmitoyl-CoA by addition of AMP to palmitate
 firefly reaction
substrate-limited reactions vs. enzyme-limited reactions in metabolism
Redox chemistry
 half-cell reactions
 calculating half-cell potentials
E'\text{\textregistered}\) for redox reactions
 nernst equation
 finding half-reactions in sugar oxidation
 predicting reactions from half-cell potentials
NAD/NADH and NADP/NADPH
FAD/FADH2 and FMN/FMNH2)

Lecture 5 Glycose and glycolysis

Glucose metabolism overview
Glycolysis overview
 preliminary phase
 payoff phase
Individual reactions and enzymes
 Hexokinase
 phosphohexose isomerase
 anomers to understand reaction
 phosphofructokinase (PFK-1)
 aldolase
 two 3-carbon compounds
 triose phosphate isomerase
glyceraldehydes 3-phosphate dehydrogenase
 active site and mechanism
 phosphoglycerate kinase
 substrate level phosphorylation
 phosphoglycerate mutase
 a bis-phosphorylated intermediate
 enolase
 keto-enol chemistry
 pyruvate kinase
Uses of glycolysis
 single cells and large animals

Lecture 6 More glycolysis and pentose phosphate

Uses of glycolysis
 single cells and large animals

Entry of other sugars into glycolysis
 Sucrose: fructose and glucose
 Lactose: glucose and galactose
 Fructose
 6 or 1 phosphorylation
 aldolase of 1-P in liver
 Galactose: addition to UDP, epimerization

Glucose from glycogen
 structure and phosphorolysis

Fermentations: continuous energy in the absence of O2
 lactate production
 ethanol production

Regulation of glycolysis
 energy landscape reveals regulated enzymes
 isozymes of hexokinase
 PFK and multiple regulators
 allosteric control of glycogen breakdown

Pentose phosphate pathway
 source of NADPH, ribose and many sugars
 oxidative steps
 non-oxidative steps

Lecture 7 PDH and Krebs Cycle (delivered by Steve Mason)

Overview of Krebs cycle and respiration
 acetate is central
 first Krebs, then respiration

Coenzyme A, or CoA-SH: the acetate carrier

Pyruvate Dehydrogenase Complex (PDH)
 the reaction
 CoA-SH
 lipoic acid
 the catalytic cycle
the layout of PDH TPP, lipoic acid, FAD, NAD
Krebs cycle
reactions and logic
source of reducing equivalents
individual reactions
Citrate synthase
Aconitase
Isocitrate dehydrogenase
alpha ketoglutarate dehydrogenase complexes
analogy to PDH
Succinyl CoA synthetase
produces GTP
Succinate dehydrogenase
FAD/FADH2
inhibitors
Fumarase
specificity
Malate dehydrogenase
summary of input and output

Lecture 8 More Krebs Cycle

Prochirality in aconitase reaction
“three point landing” model
Sum of Krebs cycle reactions: energy revenue
Amphibolic nature of Krebs cycle
anapleurotic reactions
pyruvate carboxylase
PEP carboxykinase
PEP carboxylase
malic enzyme
biotin and carboxylation
Enzyme complexes
Regulation of Krebs cycle
citrate synthase
isocitrate dehydrogenase
alpha keto glutarate dehydrogenase
Glyoxylate cycle
making glucose from acetate groups
isocitrate lysase
malate synthase
glyoxysome: cell biological aspects of metabolism
Coordinate regulation of Krebs and glyoxylate
isocitrate lysase: allosteric
isocitrate dehydrogenase: phosphorylation control by
Lecture 9 Respiratory chain and oxidative phosphorylation

Functions and structures of the mitochondrion
Descriptions of electron carriers
 ubiquinone
 heme
 iron-sulfur centers
Respiratory chain ideas and studies
 E values and an ordered cascade
 use of inhibitors
 biochemical studies of isolated complexes
 (Efraim Racker)
Electron donors
 ubiquinone; CoQ
 cytochromes
 iron-sulpher centers
Predicting/hypothesizing the electron transport chain
 order of electron carriers
 use of blockers
 biochemical studies
Complex composition of respiratory chain components
Complex I: NADH dehydrogenase
Complex II: succinate dehydrogenase
Complex III ubiquinone:cyt c oxidoreductase
 the Q cycle
Complex IV: cytochrome c oxidase
Making a proton gradient
 two components: chemical (concentration gradient) and
 electrochemical (voltage)

Lecture 10 Chemiosmotic Hypothesis and the F1 ATPase

Electron transport chain
 proton-motive force
 osmotic component
 electrochemical component
Chemiosmotic hypothesis
 Statement of hypothesis
 Experimental observation of coupling
O2 consumption and ATP production
 Observation of coupling
 Uncouplers as membrane perturbants
 Weak hydrophobic acids
 Direct reconstitution
F1 ATPase
 how energy is used: product extraction
Structure of the ATPase
 F1 active sites
 Fo membrane channel
 rotary concept
 direct rotary experiment Noji et al.
Other rotary engines
 bacterial ATP synthase
 direct mechanical energy from H+ grad
Use of uncoupling
 hybernation
Coordinate regulation
 ADP limitation: “acceptor control”
 coordinated regulation of entire glucose oxidation
Bookeeping
Mitochondrial diseases

Lecture 11 Remaining mitochondrial stuff; Gluconeogenesis, and coordinated regulation of glucose

Malate-Aspartate shuttle: getting electrons into and out of the mito
 redox and transaminations
 carbon skeletons are a good way to follow complex reaction
 schemes
Uncoupling as a useful function: thermogenin and heat
Coordinated regulation of respiration, Krebs and glycolysis
 Acceptor control: ADP availability regulates respiratory chain
 NADH, ATP/ADP and other intermediates regulate Krebs
 similar regulation of glycolysis
Mitochondrial diseases
Anabolism: gluconeogenesis
 overview of glucose synthesis in animals and plants
 bypass steps in glycolysis
 PC/PEPCK
 regulation of PC vs PDH by acetyl-CoA
 two routes of pyruvate to PEP depending on cytosolic
 NADH

 FBP-1
G-6 phosphatase
Regulation of gluconeogenesis
Fr2,6BP activator of glycolysis and inhibitor of gluconeogenesis
coordinate control of PFK1 and its FBP1
synthesis by PFK-2 and FPolase-2: one polypeptide!
Control of Fr2,6BP by phosphorylation
insulin stimulates dephosphorylation (elevates Fr2,6BP)
glucagons stimulates phosphorylation (lowers Fr2,6BP)

Glycogen
description of structure
glycogenin, branch structure, 1-4 and 1-6 linkages
granules
synthesis of glycogen
UDP-glucose, glycogenin, glycogen synthase
branching enzyme
breakdown of glycogen
glycogen phosphorylase, debranching enzyme

Control of glycogen metabolism
allosteric control of glycogen phosphorylase phosphorylation
hormonal control of GP phosphorylation
insulin decreases activity (less phosphorylated GP)
glucagons (in liver) increase activity (more phosphorylated GP)
hormonal control of GS phosphorylation
insulin, glucose increase activity (decrease phosphorylation)
glucagon and epinephrine inhibit GS (increase phosphorylation)

Liver as a glucostat
various ways glucose is processed in liver
normal blood glucose levels
Cori cycle: trans tissue regeneration of glucose
response of liver to blood glucose levels: a buffer
glucagons effect on glycogen met. and glucose met.
insulin effect on glycogen met and glucose met.

Muscle vs. liver: the selfish tissue
The pancreas as source of glucagon and insulin

finish lecture 11
regulation of glucose storage and utilization

Lecture 12 photosynthesis and carbon fixation

Carbon fixation
molecular aspects of carbon fixation
Chloroplast
structure and origin
Light: The Biggest Bear
Pigments that participate
structures
properties
action spectrum
Macromolecular organization
LHCII
phycobilosome
chloroplast photosystem
Bacterial photosystems
cycling electrons for H+ gradient
harvesting electrons for reducing equivalents
Chloroplast photosystem: the Z scheme
system II
water splitting and proton gradient
system I
making reducing equivalents
cytb6f: linking photosystems II and I
water splitting complex: where those e come from
Chloroplast compartments
lumen of the thylakoid membrane
Other light-harvesting complex
bacteriorhodopsin
Light independent processes
Calvin cycle
Rubisco
3 stages fixation, reduction, and regeneration
Regulation of photosynthesis
stromal conditions Mg+2 and pH
Calvin cycle enzymes reg. by redox
control of Fr2.6BP more in dark, less in light
more glycolysis when dark, more gluconeogenesis when light
Transport of products to cytosol
C4 plants
rubisco’s unanticipated substrate
cell biological solution to this problem

Lecture 13 catabolism of fats

Structure of phospholipids and triglycerides
Absorption of fats
uptake, conversion, packaging
chylomicrons
Use of leftover glycerol
one per phospholipid
CoASH as an acylcarrier
Carnitine and mitochondrial oxidation
rate-limiting step in b-ox
Beta oxidation: an interated pathway
Steps in beta oxidation
dehydrogenation
hydration
dehydrogenation
transfer to new CoASH

Effectiveness of beta-ox for energy and water
bear
camel

Special cases on B-oxidation
mono-unsaturated
polyunsaturated
odd-numbered
cobalamin

FAO in mitos and peroxisomes

Ketone bodies
excess AcCoA
acetoacetate and b-OH-butyrate
synthesis via HMG-CoA
HMG-CoA lysase
utilization
transfer to CoA
lyase

Presence of ketone bodies in diabetics and dieters

Lecture 14 outline Fat Anabolism

Fatty acid synthesis
carboxylation of AcCoA
FAS complex
ACP like CoA
FAS reactions
loading of malonyl coa
condensation
reduction
dehydration
reduction
transfer

NADPH
cyto
chloroplasts
source reactions
malic enzyme
pentose phosphate

Citrate as a carbon source
Regulation of FAS
insulin
glucagon
allosteric

Further steps in synthesis
elongation
desaturation
Cyclooxygenase
 protaglandins
 thromboxanes
Inhibitors of COX
 aspirin, etc “NSAIDS"
Phospholipid synthesis
 anatomy: headgroup and DAG
 chemistry of linkages
 CDP as carrier
 two strategies
Isoprenes and cholesterol
 four stages of cholesterol synthesis
 mevalonate
 similarities to KB synthesis
 rate limiting enzyme HMG-CoA reductase
 active isoprenes
 condensation to squalene
 production of cholesterol
 regulation of cholesterol synthesis
 both LDL receptor and HMG-CoA reductase regulated
 the statins: inhibitors of HMG-CoA reductase
 thousands of isoprene compounds in biology
 many sterols are important in physiology
Lipoproteins
 chylomicrons, VLDL, LDL, HDL

Lecture 15 Amino acid catabolism and urea cycle

Nitrogen from AA
Three routes to liver
 ammonia from ingested AAs
 aspartate from muscle
 glutamine from muscle and other tissue
Final fate of nitrogen
 ammonia, urea, uric acid
Transamination to aKG
 PLP an active aldehyde
 reactions after addition of AA
 CO2 removed to give amine
 H removed and replaced to give D form
 N removed to give alpha keto acid
Glutamine as N carrier
 glutamine synthetase and glutaminase
Aspartate as N carrier
The urea cycle, also called the ornithine cycle
 two compartments
mito, and cyto
structure of urea
reactions
carbamoyl P production
addition to ornithine to make citruline
addition of AMP
replacement with aspartate to make arginosuccinate
removal of fumarate to make arginine
cleavage of urea to regenerate ornithine
regulation of UC
acetyl glutamate
Medical enhancement of N removal
synthetic allosteric
giving bulk metabolites
Essential and non-essential amino acids
Aa catabolism and the Krebs cycle
One carbon metabolism
SAM, tetrahydrofolate, biotin
Diseases of AA catabolism
genetic blocks to the pathways
PKU

Lecture 16 Metabolism of Amino acids and Nucleotides

The nitrogen cycle
nitrogen fixation
ammonia, nitrates, nitrites and N2
nitrogen-fixing bacteria
nitrogenase
legumes
 glutamine as a N source
gln synthetase
reaction
regulation
adenylylation, guanylylation
glutamine amidotransferases
Synthesis of AA
familiar sources Krebs, glycolysis, pp pathway
regulation
classic feedback
crosstalk between pathways
Synthesis of things from AAs
glutathione, neurotransmitters, porphyrins, creatine
Nucleotide structure
names and structures
nucleotides and nucleosides
bases purines and pyrimidines
Synthesis of nucleotides
PRPP
purine synthesis
many molecules contribute
construction on PRPP ring
IMP and subsequent conversion
regulation of multiple steps
PRPP synthetase
glutamine-PRPP amidotransferase
pyrimidine biosynthesis
carbamoyl phosphate
first base, then addition to PRPP
UMP to UTP to CTP
regulation
CTP regulates ATP
balanced synthesis: purines override CTP

Synthesis and salvage of purines and pyrimidines
APRT
HPRT and Lesch-Nyhan disease
pyrimidine pathways as well
inhibitors of glutamine amidotransferases
azaserine, acivicin

Production of D's from R's
ribonucleotide reductase
glutathione or thioredoxin as a source
NADPH ultimately
regulation of RNR
primary regulation (ATP vs. dATP)
specificity site
balanced synthesis

Production of T from U
thymidylate synthase
THF as methyl donor, serine as replenisher
drugs that affect cycle of THF usage
methotrexate, FU (mammals)
trimethoprim (bacteria)

Purine catabolism
ADA deficiency
xanthine oxidase overactivity
gout and allopurinol

Lecture 17 Cancer, Ageing and Metabolism

Problems with being long-lived metazoan
cell quantity
cell quantity
Why cancer is so difficult
fighting self-derived cells
Cancer and oxygen
 HIF1-alpha
 glycolysis
 angiogeneic factors
Apoptosis
 definition
 cytochrome c
Differences between cancer cells and normal ones
 the citrate lysase connection
 source of AcCoA, and NADPH
 orphan drugs that block citrate lyase
Ageing: a universal feature of living things
 yeast, worms, flies, rodents, primates
Caloric restriction
 variety of organisms
 Primates and humans?
 Okinawa study
 Biosphere 2
 NIH study of CR in monkeys
 C58: the oldest rhesus monkey?
Genetics of ageing
 progeria indicates master ageing genes
 C. elegans
 daf2-the insulin connection
Yeast
 SIR2: the more the better
 NAD⁰-dependent protein deacetylase
CR may be connected to SIR2 by insulin
Molecules that stimulate SIR2 homologues: STACs
 resveratrol

Lecture 18 Exercise, Diet and Obesity

Liver as a metabolic integrator
 glucose pathways
 amino acid pathways
 lipid pathway
 glucostat
Adipocytes
 fat storage and synthesis
Metabolic stores of lipid, protein, and carbohydrate
 liver glycogen vs. muscle glycogen
Interplay between liver, muscle, and adipocyte
Muscle fuels
 no glucose-6-phosphate
 phosphocratine as phosphate buffer
 Cori cycle restores muscle by use of liver
Heart vs. muscle
Brain metabolism
 PET scanning for glucose ketone bodies
Glucose maintenance
 range
 insulin and glucagons
 other hormones
Insulin and diabetes
 molecule
 effects
 source
definitions of diabetes
 type I insulin production; 5-10% of cases
 type II insulin response: remaining cases
 rapidity of increase
 receptor removal from different tissues
 a novel strategy: glucokinase activation, by Dr. Joseph Grippo
 glucokinase: the liver-specific hexokinase
 structure and effect of synthetic allosteric activator

Obesity and diabetes
 Dramatic increase over time
 BMI
 correlates with disease, esp type II diabetes
 genetics of obesity
 ob/ob mice
 leptin is the altered gene
 an adipocyte "hormone of plenty"

CNS components of appetite and energy expenditure
 Leptin works centrally
 appetite-controlling peptides
 PYY decreases, ghrelin increases
 cannabinoid receptor and appetite control
 CB1 receptor for cannabinoids
 CB1 blockers suppress appetite
 rimonabant (Acomplia®)

The explosion in high-fat, high carb foods
 lifestyle vs. evolution
 the industrialization of the food industry
 Fast Food Nation by Eric Schlosser (info on website)
Exploring genetics of obesity and fat balance
 Pima people on western diet
 50% vs. 6-8% adult onset NIDDM
 Thrifty gene model (certainly multiple genes)
 model organisms
 Kaveh Ashrafi (UCSF)
 C. elegans (worms) and nile red
 fat stores can by visually scored
 fat-storage related genes can be discovered

Human behavior and obesity
calories and activity

interventions
- consumption, absorption, utilization
- gastric bypass surgeries
- low carb diets
 - inducing a lipolytic state
- 2003 studies on website for the interested